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1. Introduction
Clouds play an important role for solar and terrestrial radiation. As a consequence, clouds have a strong 
impact on both the energy budget and global climate. The monitoring of the evolution of cloudiness 
through the years is important for the local climates and in itself an important climate indicator. Surface 
stations are sparse and with varying density and practices over time. Space based observations are 
necessary and satellite retrieved cloud products have revolutionised this research. Especially with the 
number of channels and resolution being available on AVHRR (1978-) and SEVIRI (2004-) instruments the 
potential for reliable satellite based cloud products is great. Data from earlier geostationary instruments, 
like MVIRI from EUMETSAT, make it possible to extend the geostationary record back to 1983.

Good quality cloud data sets have been produced by the EUMETSAT Satellite Application Facility on 
Climate Monitoring (CM SAF) for the geostationary Meteosat and AVHRR polar platforms. They 
complement each other over the European area but an optimally gridded data set covering all of Europe 
is needed for climate studies, validation of models and solar energy potential. One of the tasks in UERRA 
is to produce such a pan-European analysis of hourly cloud fraction at 5.5 km resolution for the years 
1983-2013.

This report describes the data and methods used to produce a first version of the European cloud 
fraction analysis covering the years 2004-2009 when the CLAAS-A1 (SEVIRI) and CLARA-A1 (AVHRR) 
datasets overlap. A good quality cloud product is soon to be released by the CM SAF also for the entire 
Meteosat era, 1991 (later on 1983)  onwards. The next version of the cloud analysis is intended to be 
based on this dataset together with the new CLARA-A2 dataset from the polar orbiters to cover the 
intended 30 years.

2. Data
The proposed cloud cover analysis should combine the best available data for every given point and time.
The data used consist of binary information about cloud cover from the CM SAF datasets CLAAS-A1 
(SEVIRI) and CLARA-A1 (AVHRR) together with meta-data about position, time and processing status. 
When no satellite data is available, cloud fraction from the EURO4M HIRLAM reanalysis is used as a gap 
filler. Synoptic observations (SYNOP) are used to estimate error covariances and for validation. In this 
section the different datasets are described in more detail.

CLAAS-1

The first edition of the SEVIRI cloud property dataset (CLAAS-1) was released by the CM SAF in 2013 
(Stengel et al., 2013). The SEVIRI instrument has a spatial resolution of 3 km × 3 km at the nadir and a 
complete image of the Earth’s full disk consists of 3712 × 3712 pixels. Input to the retrieval schemes were
inter-calibrated effective radiances of Meteosat-8 and 9, allowing the the dataset to homogeneously span
8 years from 2004 to 2011. The cloud mask is described in the Algorithm Theoretical Basis Document (CM
SAF, 2013a) from which  the following information is obtained. 

SEVIRI on board MSG represents a significant step ahead compared with the earlier MVIRI instrument, 
with a higher temporal sampling (quarter hourly instead of half hourly), and an increased spatial 
resolution (3 km at sub satellite for all channels except 1 km for the high resolution visible (HRV) channel,‐
compared with 5 km and 2.5 km for the infra red and visible channels of Meteosat). But the major ‐
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improvement is its enhanced spectral characteristics (12 spectral bands against only three for Meteosat) 
which allows an accurate cloud cover analysis even at night time (due to its 3.9 µm channel).‐

The cloud mask is derived directly from results of a cloud screening or cloud masking method and 
comprises six categories: Cloud filled, cloud-free, cloud contaminated and non-processed, snow/ice 
contaminated, undefined. The central aim of the cloud mask processing is to delineate all cloud-free 
pixels in a satellite scene with a high confidence. In addition, the product provides information on the 
presence of snow/sea ice, dust clouds and volcanic ash plumes.

Bit number Flag name Description

0 Land Pixel is over land.

1 Coast Pixel is located in the coastal region.

2 Night It is night where the pixel is located.

3 Twilight The pixel is located in the twilight zone.

4 Sunglint Sunglint is likely.

5 High terrain Pixel is located over high terrain.

6 Inversion Low level inversion is present according to NWP.

7 NWP present NWP information have been used.

8 AVHRR channel missing Some AVHRR channel is missing.

9 Low quality One or more of the features of the decisive tests were close to one
of its thresholds indicating low quality.

10 Reclassification Pixel was re-classified in the filtering of isolated pixels.

11 Contaminated The state before spatial smoothing (the filtering above) was cloud 
contaminated.

12 Cloudy The pixel was cloudy before spatial smoothing.

13 External sea ice information External sea-ice information used.

14 Internal sea ice information Ice information derived from NWP.

15 Sea Ice Sea-ice present according to sea ice maps.

Table 1: Description of the bits in the PPS processing flag.

Information about the processing is given in a 11 bit quality flag. Here, three bits define illumination and 
viewing conditions (0: Undefined, 1: Night, 2: Twilight, 3: Day, 4 Sunglint), two bits describe the NWP 
input data (0: Undefined, 1: All NWP parameters available and no low level inversion, 2: All NWP 
parameters available with a low level inversion, 3: At least one NWP parameter missing ), two bits 
describe the SEVIRI input data (0: Undefined, 1: All useful SEVIRI channels available, 2: At least one useful
SEVIRI channel missing, 3: A least one mandatory SEVIRI channel missing), two bits describe the quality 
of the processing itself (0: Non processed; containing no data or corrupted data, 1: Good quality, 2: Poor 
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quality, 3: Reclassified after spatial smoothing, i.e. very low confidence), a single bit for temporal 
processing indicator (significant for cloud-free pixels; 0: Not performed 1: Performed), and finally one bit 
for HRV processing indicator (significant for cloud-free pixels; 0: Not performed 1: Performed).

UNIX tar files with the cloud mask product were retrieved from the CM SAF ECFS archive at ECMWF.

CLARA-A1

The CLARA-A1 dataset is a global dataset of cloud, surface albedo and surface radiation products derived 
from measurements of the Advanced Very High Resolution Radiometer (AVHRR) onboard the polar 
orbiting NOAA and Metop satellites (Karlsson et al., 2012). The Cloud Mask is the most basic product of 
the SAF NWC Polar Platform System (PPS). The product is described in detail in a Algorithm Theoretical 
Basis Document (CM SAF, 2011) from which much of the following information has been collected. 

The aim of the Cloud Mask product is to delineate all absolutely cloud-free pixels in a satellite scene with 
high confidence. In addition, it will identify cloud free snow or ice contaminated pixels when illumination 
allows and provides processing flags indicating processing conditions and estimated quality for each 
pixel. The instantaneous CLARA-A1 retrievals have a spatial resolution of 4 km × 4 km. The cloud mask 
from CLARA-A1 is reported using the same six classes as for CLAAS-1. The meta-data used for the cloud 
analysis consist of the instantaneous sun-satellite viewing geometry and the processing flags. The 
processing flag is a 16 bit number that should be interpreted according to Table 1. 

Separate UNIX tar files with satellite swath information and cloud mask products were retrieved from the
CM SAF ECFS archive at ECMWF.

Synoptic observations

Independent data is needed for validation and statistical error analysis for the optimal interpolation 
method. For this purpose six-hourly surface data of total cloud cover, coded by the observers into the 
World Meteorological Organization (WMO) synoptic code (SYNOP), was retrieved as BUFR files from the 
MARS archive at ECMWF. Here, the cloud cover is reported at 00, 06, 12 and 18 UTC in nine categories (0,
10, 25, 40, 50, 60, 75, 90, and 100 %).

Numerical weather prediction data

A regional reanalysis covering Europe for the years 1979–2014 has been produced with the HIgh 
Resolution Limited-Area numerical weather prediction (NWP) Model (HIRLAM) forecast model and data 
assimilation system (Dahlgren et al., 2016). The reanalysis was done as part of the EU FP7 project 
“European Reanalysis and Observations for Monitoring” (EURO4M).  Surface and upper-air variables 
were analysed at 0000, 0600, 1200 and 1800 UTC on a three-dimensional grid-mesh with 22 km spacing 
covering Europe. Cloud cover is available as forecast data with 3 hourly time steps and the total cloud 
fraction is reported with a number between 0 and 1.

For the present cloud analysis these forecast data are used for gap filling in order to produce a 
continuous data set in space and time for every hour during the years 2004-2009. When needed, the 
forecast with a valid time closest to the analysis hour is used.
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3. Method
In this section the geometry of the analysis domain is presented along with information about the 
analysis method, how the observations are prepared for the analysis and how the necessary error 
statistics is estimated.

Geometry

In EURO4M, the HIRLAM reanalysis was further downscaled and used as input for a 2D-analysis of a 
number of surface-related parameters (Landelius et al., 2016). To be compatible with these data the 
present cloud cover analysis is using the same grid and geometry. The horizontal grid is expressed in a 
rotated latitude and longitude geometry defined by shifting the South Pole to latitude 29° S and 
longitude 15° E. The grid mesh has 1273 × 1213 grid points with 0.05° resolution (5.5 km) and its 
geographical coverage of the domain is shown in Figure 1.

Super-observations

The cloud mask from CLAAS-1 and CLARA-A1 is a categorical variable (the six classes previously 
described). In order to arrive at a variable compatible with traditional cloud cover estimates such as 
SYNOP data the six classes are first reduced to three – cloudy (pixels classified “cloud-filled” or “cloud-
contaminated”, cloud free (“cloud-free” or “snow/ice-contaminated) and missing data (“non-processed” 
or “undefined”). Then a weighted fractional cloud cover is calculated for subregions with an area of 16.5 
km x 16.5 km (3 x 3 analysis grid boxes) using the non-missing data:

Ctot=∑w iCi /∑ wi .

Figure 1: Geographical domain
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The calculations are done using all satellite data acquired within a time window of about 60 minutes, 
centred at the analysis hour and with overlapping subregions for every point in the analysis grid. This 
procedure is similar to the one introduced by Lorenc (1981) where single observations are combined into 
super-observations to avoid numerical instabilities in the analysis when observations are very close 
together in space. Using a sub-region with an area of 16.5 km x 16.5 km (3 x 3 analysis grid boxes) for the 
computation of total cloud cover is in line with what has previously been done when comparing CM SAF 
data to SYNOP observations (Derrien and LeGleau, 2005, Werkmeister et al., 2015). 

With a time window of just below 60 minutes there will (when no MSG scenes are missing) be three 
SEVIRI scenes available for every analysis hour (HH) since these data are acquired every 15 minutes (HH-
15, HH+00, HH+15). The number of available swaths from the polar orbiting satellites will depend on the 
number of operating satellites at the date in question as well as the time of day.

The left panel in Figure 2 shows the monthly average, per satellite, of the number of cloud mask items 
used for the calculation of one super-observation field. The average number of cloud mask items per a 
single grid box is shown in the right panel of the same figure. Note that the number of data from the 
geostationary satellite outnumbers the data from the polar-orbiting satellites to the extent that their 
contribution to the northern area is hardly visible.

The weights used when calculating the fractional cloud cover depend on three things: 1) time difference 
between analysis time and data time, 2) scanning geometry, and 3) the SAF processing flags. For the time 
difference a simple relation is used to account for typical time scales in cloudiness. Note that the 
weighting drops substantially between 18 and 30 minutes resulting in an effective time window of about 
60 minutes:

w tdiff=1/2+1/2tanh (7−δt⋅0 .3 ) ,

Here δt is the time difference in minutes. Distortion due to the viewing geometry is divided into three 
factors: scan angle, satellite – Earth distance, and surface inclination:

Figure 2: Average number of cloud mask items used for the hourly super-observations. 
Left: per satellite. Right: per grid box.
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α = 2atan(s/2/h)
w scan = h (tan(β )−tan(β−α ))

wdist = 1+
R
h
(1−cos (γ ))

wincl = 1 /cos (γ )
wgeom = s /(wscan wdistwincl )

,

Here, wgeom is the total weight, α is the apex angle (nadir field of view), β is the satellite scan angle, γ is 
the Earth zenith angle. The field of view at the sub satellite point is given by s and the orbit height and 
Earth radius by h and R respectively, see Figure 3. 

Information from the SAF processing flags are also used to influence the weighting of the cloud mask 
observations. Initially the weight for the quality flag, wqc, is set to 1. In case of a AVHRR swath from the 
polar orbiters the weight is reduced with a factor of 0.5 if any of the following bits are set in the quality 
flag (see also Table 1): Sunglint (4), Inversion (6), Low quality (9), or Internal sea ice information (14). The 
weight is set to zero in case of Reclassification (10),. For the SEVIRI scene the weight for the quality is 
reduced with a factor of 0.5 when “Poor quality” is reported and set to zero if the flag indicates that the 
observation is “Non processed” or “Reclassified”. 

The total weight used in the calculation of the cloud fraction is given by the multiplication of the weights 
for the time difference,  viewing geometry and quality information:

w=w tdiff wgeomwqc .

The relations for calculating weights based on time differences, viewing conditions and quality meta data 
were derived in collaboration with SAF personnel (Scheirer, personal communication, 2015).

Optimal interpolation analysis

Originally the idea was to use the MESAN (Häggmark et al., 2000) or MESCAN (Cornel et al., 2016) system
for the cloud cover analysis. However, it turned out to be too computationally demanding due to the 
facts that the number of observations is more or less equal to the number of grid points in the first guess 
field (NWP cloud cover from HIRLAM) and that the overlapping super-observations are correlated. On the
other hand, assuming that the error covariance for the first guess and the super-observations are 
homogeneous, the analysis can be done efficiently in the Fourier domain. 

Figure 3: Satellite viewing geometry
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The optimal interpolation (OI) method (Daley, 1991) that is employed by MESCAN/MESAN is a 
generalisation of the least squares method to multivariate systems and combines the observations and a 
first guess to produce an analysis. The first guess vector state, xb , often referred to as the background 
state, is usually a forecast generated from a NWP model. To obtain the analysis, xa , an analysis 
increment, δxa , is added to the background state. The analysis increment is obtained by calculating the 
weighted difference between the observational vector data, y , and an observation operator applied to 
the background, H(xb). This quantity is also known as the innovation vector, y - H(xb). In this application 
the observation operator is the identity matrix since there are observations corresponding to every grind 
point in the first guess (how this is obtained is described later in this section). Given that H equals the 
identity operator, the analysis is given by the following relation:

xa=K ( y−xb ) ,

where K is the gain matrix (or weight matrix), determined from the estimated statistical error covariances
of the forecast, B, and the observations, R. The expression of the analysis increment, may be further 
written as follows:

δxa=B (B+R )−1
( y−xb ) .

Hence, in the OI method, the spatial structure of the innovation is incorporated into the correlation 
functions. Now with the number of grid points being of the order O(106) the number of elements in the 
covariance matrices are O(1012). However, if the error covariance is homogeneous (the same for every 
point in the grid), the corresponding matrix will have a symmetric Toepliz form and be approximately 
circulant (true if assuming periodicity of the field) and possible to decompose as (Golub and Van Loan, 
1996):

C=FT DF

where D is a diagonal matrix representing the Fourier transform of the first row in C. This corresponds to 
the Fourier transform of the covariance field for any single point in the grid (save a phase shift). Now if 
we Fourier transform the first guess (or observation) error vectors and calculate their error covariances in
Fourier space the resulting matrices will be diagonal (xt denotes the truth):

Figure 4: Error correlation functions for the first guess (left) and super-observations (right). 
Note the difference in horizontal scales – the correlation for super-observations is narrower.
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E {F (xb−x t ) (F (xb−x t ))
T }=F {ϵb ϵb

T }FT =FBFT=DB

since

FT DB F=B .

Using this fact the expression for the analysis increment can be rewritten as:

δxa = FT DB F (FT DB F+FT DR F )
−1

( y−xb)
= FT DB ( DB +DR )

−1 F ( y−xb)
.

This makes the analysis computationally tractable since all entities are now of order O(106) and the two-
dimensional Fourier transform, F, as well as its inverse, FT=F-1, can be evaluated efficiently. Note that since
the error covariance matrices are assumed to be circulant they equal the error correlation matrix times a 
constant. Hence it is only the ratio between the scalar covariances for the first guess and the observation 
error that determines the gain matrix ones the correlation matrices are established.

The error correlation matrix for the first guess from HIRLAM was estimated from an ensemble generated
with the NMC method (Parrish and Derber 1992) for the years 1982-2010 based on Fourier transformed
differences between 48 and 24 hour forecasts issued at 00, 06, 12, and 18 UTC. 

For the correlation matrix corresponding to the observation error another method had to be employed.
Here the assumption is that the original cloud mask observations are uncorrelated and that the forma-
tion of the super-observations is what brings in the spatial correlation. The calculation of cloud amount
as a fraction of the number of cloudy points within a 3 x 3 neighbourhood corresponds to a convolution
of the original data with a 3 x 3 box filter. Filtering uncorrelated Gaussian noise results in a signal where
the autocorrelation is given by the self-convolution of the filter. In this case the autocorrelation becomes
a 2D triangular function of size 6 x 6 grid points. The error correlation functions for the first guess and ob-
servations are illustrated in Figure 4.

In order to estimate the error covariances, the following three measures were calculated under the as-
sumption that the first guess, the super-observations and the SYNOP observations are all uncorrelated:

Figure 5: High frequency contents in the super-observations. Left: Amplitude of the used high-
pass filter. Right: High-pass filtered mean cloud cover from the super-observations.
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E {(xb− ysynop)
2
} = E {((xb−t)−( y synop− t))2} = E {ϵ b

2
} + E {ϵ synop

2
}

E {(xb− yso)
2
} = E {((xb−t)−( y so−t))2} = E {ϵ b

2
} + E {ϵ so

2
}

E {( ysynop− yso)
2
} = E {(( ysynop−t )−( y so−t))2} = E {ϵ synop

2
} + E {ϵ so

2
}

.

This equation system was solved for εb , εso and εsynop using statistics from the years 2004 – 2009. In order
to reduce the influence of  any common underlying  seasonal  and diurnal  variations,  separate  values
where calculated for each month and hour (00, 06, 12 and 18 UTC) and where then averaged to obtain a
single value of the error standard deviation per entity:  εb = 0.29 , εso = 0.21 and εsynop= 0.17 respectively.
The ratio between the error covariance for the first guess and the super-observations was then set to two
(0.292 / 0.212 rounded to nearest integer).

In order to compute the Fourier transform of the field with super-observations it needs to be without
missing data. Hence, areas with missing data are replaced with cloud cover from the HIRLAM EURO4M
reanalysis. To reduce the gradients between NWP and satellite data a median filter (of size 7 x 7 pixels) is
applied along the borders of the areas with missing data. Moreover the same median filter is afterwards
also applied to areas with low quality and few cloud mask estimates in the super-observation to reduce
the effect of moire patterns in such regions. In order to use the median filter in homogeneous areas a re -
gion growing operation is first applied to the mask defining problematic areas (less than 40 cloud mask
data constituting the super-observation with a total weight lower than 0.75).

4. Results
To verify that there is more high-resolution information in the gap-filled and median filtered super-obser -
vations than in the first guess from HIRLAM, the mean cloud cover from these super-observations was
high passed filtered focusing on frequencies not present in the first guess, see left panel in Figure 5. The

Figure 6: Left: monthly means of bias (dashed lines) and standard deviation (solid lines) for the first 
guess departure (red) and analysis increment (green). Right:  monthly means of bias (lower lines) and 
standard deviation (upper lines) compared to SYNOP observations (red: first guess, blue: super-
observations, green: analysis) .  The number of data points used for comparison is shown with a solid 
black line (legend on right axis) in both panels.
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result  is shown in the right panel of Figure 5 and it is evident that the high frequency information is not
just noise since geographical features are clearly recognizable. 

To check that the assimilation is working properly first guess and analysis departures (differences 
compared to super-observations) are calculated. Monthly means of the bias and standard deviations of 
these departures are illustrated in the left panel of Figure 6. The analysis works as desired and adjusts the
first guess to the observations reducing the standard deviation and bringing the bias down to almost 
zero. However, the degree of this fit is to a large extent controlled by the prescribed first-guess and 
observation-error statistics. In order to review the performance of the analysis it should to be compared 
to independent data. The results from such a comparison with independent SYNOP data is shown in the 
right panel of Figure 6. Here the standard deviation of the analysis increments is lower than that of both 
the first guess and super-observation departures. The bias of the analysis increment is reduced (but 
changes sign) compared to the first guess but is almost identical to that of the super-observation 
increments. 

The mean cloud cover for the years 2004 - 2009 is shown in Figure 7 for the first guess (EURO4M 
HIRLAM, the super-observations and the resulting analysis). Here it also clear that the analysis is close to 
the super-observations, which is the desired behaviour.  Analysis increments (firs guess minus analysis in 
this case) for the winter and summer season as well as for day and night time are presented in Figure 8. 
The increment is lowest for the winter night time and largest for the summer noon. Since there is very 
few observation in the northernmost region the increment is almost zero there at all times. However, 
south of this region in the North Atlantic, during daytime in the winter. Over the Mediterranean the first 
guess presents too much clouds during the winter and too little during summer nights while it is neutral 
for the summer noon. On the other hand, at summer noon the first guess has too much clouds over most
parts of the European continent. This is also true for the winter day time, but to a lesser degree.

5. Conclusion
As part of the UERRA project an hourly analysis of total cloud cover has been produced on a grid with a
horizontal resolution of 5.5 km using the optimal interpolation method. Binary cloud mask data from the
CM SAF CLAAS-1 and CLARA-A1 datasets where used as input to a process where super-observations of
cloud cover was formed as a weighted average over a neighbourhood of 3 x 3 grid boxes. Cloud cover

Figure 7: Mean cloud cover for the years 2004 – 2009 (left: EURO4M HIRLAM, middle: super-
observations, right: analysis).
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from the EURO4M HIRLAM reanalysis was used for the first guess in the analysis and also as a gap filler in
case of missing data.

The analysis works as expected and draws the first guess close to the super-observations. It also verifies
well when compared to independent SYNOP data. The super-observations have a positive bias compared
to SYNOP observations. There could be several reasons for this bias (CM SAF, 2013). One example is the
well known overestimation of cloudiness by geostationary satellites at high viewing zenith angles. The
SYNOP measurements can also be inaccurate for the same reason with a more small scale geometry. The
so-called scenery effect leads to the overestimation of cloudiness by SYNOP due to the obscuring of
cloud-free spaces by convective clouds with high vertical extent.

A problem with the generation of super-observations is that it results in some moiré patterns. The prob -
lem persists even if the size of the neighbourhood used for binning the binary cloud mask is increased to
22 x 22 km. The solution used here was to apply a median filter to reduce the effect. However, even if the
median filter smooths less than a low pass filter it still results in a loss of resolution in the filtered output.
The reason behind the formation of the moiré pattern should be investigated in more detail prior to a run
on the upcoming CM SAF data covering the years 1983 – 2014.

The estimation of the error covariances for the first guess and the super-observations was based on sta -
tistics from differences between first guess and the super-observations as well as differences between
these two entities and SYNOP observations. The assumption was that the first guess, the super-observa-
tions as well as the SYNOP observations should be independent. However, a systematic variable bias that
appears in any two of these data will result in a correlation and add an offset to both the estimate of the
covariance error for the first guess and the super-observations. Since it is the ratio between these two
that  is  of  importance for  the result  it  will  depend on how large  this  offset  will  be.  The method of
Desroziers et al. (2005) was tested but resulted in unrealistic large length scales of the statistics for B + R.
Again the reason for this is probably an underlying seasonal co-variation in the first guess and the super-
observations. To reduce these effect, statistics for individual months and times of the day these effects
where calculated and then averaged in order to arrive at a better estimate. 

With the arrival of new data from the CM SAF in terms of a cloud cover product for the whole Meteosat
period (1983 – 2015) and the new CLARA-A2 version (1982 – 2014) it should now be possible to apply the
method presented in this report to these data and finally produce a combined analysis of total cloud
cover for all of Europe.

Figure 8: Mean analysis increments for different months (January and July) and times of day (00 and 
12 UTC) for the years 2004 – 2009.
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