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1 Introduction

The Met Office has completed development of the regional ensemble of reanalyses system that
will be used to produce an ensemble of forty year regional reanalyses for the European domain
and production has begun. The system is being used to produce an ensemble of realisations of
atmospheric variables, available hourly for forty years. The set of realisations can also be used
to derive mean and spread (uncertainty) for each variable.

The ensemble information will also be used to derive background error covariance statistics to
drive a high resolution deterministic reanalysis for the same period. These error statistics will
be synoptically dependent and are expected to be superior to static error covariance statistics.
The deterministic and ensemble reanalyses are the principal contribution of the Met Office to
the Uncertainties in Ensembles of Regional Reanalyses (UERRA) project, [Unden et al., 2014].

This document is a report on diagnostics of the ensemble system which demonstrate the validity
and quality of the production. Section 2 details aspects of the system design and development.
Observation monitoring, assimilation statistics and verification statistics are detailed in Sections
3, 4 and 5, respectively. The report is summarised in Section 6.

2 Ensemble System

Each member of the ensemble is produced by a cycled forecast using the Met Office Uni-
fied Model, [Davies et al., 2005], with the Even Newer Dynamics dynamical core (ENDGame),
[Wood et al., 2014]. The forecast is initialised three hours before the analysis time and runs for
a further nine hours beyond the analysis time to provide a background state for the subsequent
cycle. An analysis increment to the background is calculated by 4DVAR data assimilation,
[Rawlins et al., 2007], which estimates the optimal atmospheric state given the observations and
background state within a six hour window. Hourly output atmospheric fields are available via
reanalyses every six hours and (re)forecasting from these reanalyses to obtain hourly fields in
between these times. The cycling system is shown in figure 1 and a full list of output fields is
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2.1 Boundary Conditions

Figure 1: Diagram of ensemble member cycling.

available in appendix B.

The members of the ensemble are isolated from one another, with no re-centering of the ensem-
ble at analysis time. Such a system has the advantage that further members can be introduced
at a later date. Each member receives a different realisation of the observations, a different
realisation of the model and a different realisation of the boundary conditions. In addition an
unperturbed control member is run to perform operations for the ensemble: observations archive
extraction and format conversion, observation blacklisting using the new Monitoring and Updat-
ing Station Lists (MUSLi) system, providing a guess state for the ensemble 4DVAR analyses and
performing variational bias correction for the satellite data, [Lorenc, 2012], [Dee, 2004], (VarBC).

For each member, each observation is randomly perturbed with its own error estimate. Drawing
on previous work to diagnose model error, [Piccolo and Cullen, 2016], the model is perturbed by
adding a random analysis increment from a previously calculated archive. An analysis increment
can be assumed to be drawn from the same distribution as model error if analyses are drawn
from the same distribution as the truth.

2.1 Boundary Conditions

Regional models require boundary conditions over land, over sea, at the top of the model and at
the lateral boundaries. For all members, the boundary at the top of the model (approximately
40km) is a solid lid i.e. the vertical gradient of all modelled variables is zero.
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2.1 Boundary Conditions

Period Member i Control
01/1979 - 08/2010 HadISST2i % 10 HadISST2µ
09/2010 - 12/2016 OSTIA + HadISST2ri % 10 - HadISST2rµ OSTIA

Table 1: Sea boundary conditions for ensemble reanalysis. Subscript i indicates member number
and superscript r indicates a random date.

2.1.1 Sea boundary

The two elements which vary in the sea boundary are the sea surface temperature (SST) and
the fraction of sea ice. These are provided for the most part by the Hadley Centre Ice and Sea
Surface Temperature data set version 2, [Titchner and Rayner, 2014], (HadISST2). Since this is
an ensemble data set no additional perturbation is necessary. This data is not available beyond
2010 and so for the modern period 2010-2016 the Met Office Operational Sea Surface Temper-
ature and Sea Ice Analysis, [Donlon et al., 2012], (OSTIA) is used, degraded to the resolution
of HadISST2 and perturbed by perturbations from HadISST2 randomly drawn from an archive
(matching month, but not year). This arrangement is shown in table 1.

2.1.2 Land boundary

The land boundary is provided by the Met Office Land Surface Data Assimilation System,
[Candy, 2014], (SURF) used in a regional context for the first time. As with the atmospheric
analysis, each member of the ensemble performs its own land surface analysis from a different
realisation of in-situ observations. Along with VarBC, this is the first time SURF has been used
in a regional context and so these two regional systems were trialled against a control ensemble
using reconfigured global soil moisture and static satellite bias correction.

Figure 2 shows a comparison of the trialled system using regional SURF and regional VarBC
against a control using reconfigured global soil moisture and static satellite bias correction.
The figure shows ensemble diagnostics (rank histogram, estimate of mean RMSE and spread)in
1.5m temperature and 10m wind vector. These results show that the regional systems give an
increase in spread for 1.5m temperature and a slight increase in spread for 10m wind vector.
This is expected since each member in the control system is constrained to the same land surface
boundary. The results also show a small increase in error in 1.5m temperature.

2.1.3 Lateral boundaries

It was originally intended that the lateral boundary conditions (LBCs) should be provided by
the ensemble data set from the European Centre for Medium Range Weather Forecasting’s
(ECMWF) fifth Reanalysis (ERA5), [Dee, 2014]. Production on ERA5 was delayed so that use
of this data was no longer viable for this project. To measure the impact of reverting to static
boundary conditions provided by ECMWF’s ERA-Interim, [Dee et al., 2011], another short trial
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2.1 Boundary Conditions

Figure 2: Comparison of ensemble using regional SURF & VarBC against that using reconfigured global soil
moisture and static satellite bias correction. Left-hand plots compare (re)forecasts from the reanalyses with
observations of 1.5m temperature. Right-hand plots compare (re)forecasts from the reanalyses with observations
of 10m wind. The top row shows rank histograms for trial (blue) and control (red). The middle row shows RMS
difference of the control wth observations, the mean with observations and the control with the mean for trial
(pink, orange, dark green, respectively) and control (red, blue, light green, respectively). The bottom row shows
RMS differences of the mean with the observations and the spread of the ensemble for trial (green and pink,
respectively) and control (red and blue, respectively). 4



2.2 Ensemble size

was performed comparing the performance of the ensemble using ensemble LBCs from ERA5
against deterministic LBCs from ERA-Interim.

Figure 3 shows a comparison of the ensemble using ensemble LBCs from ERA5 with the ensem-
ble using deterministic LBCs from ERA-Interim. Again, the figure shows ensemble diagnostics
in 1.5m temperature and 10m wind vector. These results show that the spread in the ensemble
is only slightly reduced moving from ensemble LBCs to deterministic LBCs and this move also
causes a slight reduction in error.

Figure 4 shows RMS difference with observations and spread for several flavours of ensemble:
perturbed LBCs (ERA5) only, perturbed model & LBCs only and perturbed model & LBCs &
observations. The results show that perturbed LBCs cause some spread within the ensemble,
but that the majority of the spread in the ensemble is due to the model perturbations. RMS
difference with analysis seems comparable between the three systems.

2.2 Ensemble size

It was originally intended to have an ensemble size of 20 members. Experiments to investigate
the ensemble spread dependency on ensemble size were carried out to demonstrate the need for
this size of ensemble. Some results are shown in figure 5. This figure shows that increasing
ensemble size increases spread and that the larger the ensemble size the smaller the impact of
adding new members. This is expected since it is well known that at short forecast times spread
is dependent on ensemble size, [Buizza and Palmer, 1998]. Therefore the production has begun
with 20 members.

2.3 Summary

A summary of the production system is given in table 2.

3 Observation Monitoring Statistics

Station statistics comparing background (six hour forecast) with the observed values (O-B) are
used by MUSLi to make automatic decisions whether to assimilate observations from the station,
or to reject or correct the observations before assimilation during the following month. These
decisions are used for updating station assimilation blacklists within the MUSLi system. An
example of these statistics is shown in figure 6, which shows the spatial variation in bias and
standard deviation of 2m temperature O-B values at all SYNOP stations for May 1979. These
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Figure 3: Comparison of ensemble using LBCs from ERA5 with that using LBCs from ERA-Interim. Left-
hand plots compare (re)forecasts from the reanalyses with 1.5m temperature observations. Right-hand plots
compare (re)forecasts from the reanalyses with 10m wind observations. The top row shows rank histograms for
ERA5 LBCs (blue) and ERA-Interim LBCs (red). The middle row shows RMS difference of the control with
observations, the mean with observations and the control with the mean for ERA5 LBCs (pink, orange, dark
green, respectively) and ERA-Interim LBCs (red, blue, light green, respectively). The bottom row shows RMS
differences of the mean with observations and ensemble spread for ERA5 LBCs (green and pink, respectively)
and ERA-Interim LBCs (red and blue, respectively). 6



Figure 4: Comparison of 1.5m temperature forecast (T+6) from (6 member) ensemble with
perturbed LBCs only (blue), perturbed model & LBCs (pink) and perturbed observations &
model & LBCs (green). The left hand plot shows RMS difference of the mean with a random
member analysis and the right hand plot shows spread.

Figure 5: Comparison of spread in forecast (T+6) from ensemble with 6 (blue), 12 (pink) and
20 (green) members. The left hand plot shows spread in 1.5m temperature and the right in total
cloud.
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Item System
Model UM
Dynamical Core ENDGame
Resolution 0.33 ◦ ≈ 33km
Atmospheric Assimilation 4DVAR
Assimilation Resolution 0.66 ◦ ≈ 66km
Land Assimilation SURF (EKF)
Sea Boundary HadISST2
Lateral Boundary ERA-Interim (not perturbed)
Observations ERA-Interim, plus ground GPS,

plus scatterometer winds,
randomly perturbed

Model perturbations Random analysis increments
Ensemble size 20

Table 2: Summary of ensemble production system.

Figure 6: Maps of SYNOP station 2m temperature O-B bias values (left) and standard deviation
values (right) for ensemble control for May 1979. Statistics have been calculated ignoring reports
with O-B values outside gross error thresholds.
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Figure 7: Time series of number of reporting stations (green), rejected stations (purple), stations
with increased probability of gross error (pink) and corrected stations (blue) 1979-1982. Left -
surface stations, right TEMP sondes.

plots suggest that there is no spatial bias comparing the model against the observations. The
bias and standard deviation calculations ignore observations with gross errors as these obser-
vations would be rejected by quality control and are not necessarily an indicator of the overall
quality of observations from the station.

Figure 7 shows time-series of observation monitoring statistics for the control system. This shows
that there are a large number of available surface stations of acceptable quality, with relatively
few stations being rejected. There are also a large number of sondes in the domain, but many
of these require bias correction or are partially or fully rejected. The figure suggests there is
some seasonal dependency, with more surface stations being rejected in winter and more sondes
rejected in summer.

4 Assimilation Statistics

Figure 8 shows the observation penalty of the background (six hour forecast). This penalty is a
combination of the RMS differences of the six hour forecast from the reanalysis with observations
of each assimilated type and is therefore a proxy for the error of the reanalysis multiplied by the
number of observations. This figure demonstrates that the quality of the ensemble of reanal-
yses is consistent for most of the period, both across the three months shown here and across
individual members (since the spread of observation penalties is low). There are a number of
cycles of the reanalysis in which the observation penalty is very low and this corresponds to low
observation availability at these date/times. There is a larger value of the observation penalty
of the background after the longest period of these observation dropouts. This suggests that,
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Figure 8: Observation penalty of the background which is a combination of RMS differences
between the background and observations of all assimilated types. Each member’s statistics is
shown by a coloured line, the mean and the spread of values are thin and thick black lines,
respectively. Statistics are shown for March, April and May 1979.

without many observations to constrain it, the reanalysis has drifted further from the true state.

Figure 9 shows the total penalty of the analysis and the number of iterations of the 4DVAR min-
imisation required for convergence. The penalty is a measure of the distance of the analysis from
the background state and the assimilated observations. The total penalty is relatively stable,
occasionally reaching low values due to a sudden reduction in assimilated observations and some
larger values after observations are restored. The spread of values is consistently very low, but
shows some difference between different members. Likewise the number of iterations required
for convergence is relatively stable except for occasional low values, some of which correspond
to low total penalties.

Figure 10 shows the observation and background penalties of the analysis, which are the princi-
pal components of the total penalty. The observation and background penalties are measures of
the distance of the analysis from the observations and backgrounds, respectively. Both penalties
shown reflect the total penalty and are, therefore, relatively consistent except for a few cycles
for which the penalties are very low, again reflecting the small number of available observations.

Figure 11 shows the highest value of the high frequency penalties for each cycle. These are
secondary penalty components designed to penalise spuriously high atmospheric frequencies.
Unusually high values of these penalties at any point in the minimisation algorithm may indi-
cate problematic or false convergence, which may lead to a poor quality reanalysis. The figure
shows that behaviour of both statistics is relatively consistent throughout the period for all en-
semble members. There are occasionally high penalties for individual ensemble members, but
these are not so large as to indicate difficulties with convergence.
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Figure 9: Assimilation Statistics: The top plot is the total penalty of analysis and the bottom
plot is number of iterations required for convergence. Each member’s statistics is shown by a
coloured line, the mean and the spread of values are thin and thick black lines, respectively.
Statistics are shown for March, April and May 1979.
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Figure 10: Assimilation Statistics: The top plot is the observation penalty of the analysis and
the bottom plot is the background penalty of the analysis. Each member’s statistics is shown by
a coloured line, the mean and the spread of values are thin and thick black lines, respectively.
Statistics are shown for March, April and May 1979.
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Figure 11: Assimilation Statistics: Top and bottom plots show the largest first and largest
second high frequency penalties, respectively, on each cycle. Each member’s statistics is shown
by a coloured line, the mean and the spread of values are thin and thick black lines, respectively.
Statistics are shown for March, April and May1979.
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Figure 12: Assimilation Statistics for SYNOP station temperature observations: The top plot shows the
RMS difference between observations and the background, the middle plot shows the RMS difference between
the observations and analysis and the bottom plot shows the count of assimilated observations. Each member’s
statistics is shown by a coloured line, the mean and the spread of values are thin and thick black lines, respectively.
Statistics are shown for March, April and May.
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The bottom plot of figure 12 shows the count of station temperature observations assimilated
by each member of the reanalysis. This figure demonstrates the variance of the number of ob-
servations available in the archive. For most of the period shown around a thousand stations
are assimilated, but there are several cycles on which the number of available observations is as
low as of the order of a hundred. The number of assimilated observations varies little between
ensemble members.

The top plot of figure 12 shows the RMS difference between the background and the observa-
tions. This is a measure of error in the six hour forecast from the ensemble of reanalyses, taking
station temperature observations as truth. The RMS difference with the background suggests
that all members are reasonably consistent with the observations throughout the period. The
RMS difference decreases on the occasions where the available observations are few, which is
misleading. Doubtless the quality of the reanalysis diminishes for these cycles, but consistency
with the available observations remains good. Similar results are shown by the middle plot of
figure 12 which is the RMS difference between the analysis and the observations, which is a mea-
sure of the fit of the analysis to the observations. These differences are slightly lower than those
of the background indicating that the assimilation has drawn the state closer to the observations.

The same statistics are shown for sonde wind observations in figure 13. The number of avail-
able sondes varies between 19 and 122. This is a large range, but not as large as that of the
station observations. The consistency of the RMS differences between the observations and the
background and the analyses is good. Again the differences between the observations and the
analyses are smaller than between the observations and the background because the assimilation
has drawn the state towards the observations.

Assimilation statistics are shown for aircraft wind observations in figure 14. The RMS difference
between observations and the background and observations and the analysis again remains rel-
atively consistent for the period show except for a few cycles where these values become small
and a two cycles where they become large. The cycles where the differences are unusually small
correspond to cycles with few available observations. The cycles where the differences are un-
usually large correspond to cycles with very few station observations, indicating a decrease in
quality for these cycles.

5 Results

5.1 Month Average Spread

Figure 15 shows the mean values of the ensemble mean and spread over March 1979 for 1.5m
temperature, 10m wind speed and six-hourly precipitation. The reanalysis spread is greatest
over complex orography for 1.5m temperature, over the sea for 10m wind speed and where there
is high precipitation and complex orography for precipitation. This is as expected for the re-
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5.1 Month Average Spread

Figure 13: Assimilation Statistics for level 5 sonde wind observations: The top plot shows the RMS difference
between observations and the background, the middle plot shows the RMS difference between the observations
and analysis and the bottom plot shows the count of assimilated observations. Each member’s statistics is shown
by a coloured line, the mean and the spread of values are thin and thick black lines, respectively.
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5.1 Month Average Spread

Figure 14: Assimilation Statistics for aircraft wind observations: The top plot shows the RMS difference
between observations and the background, the middle plot shows the RMS difference between the observations
and analysis and the bottom plot shows the count of assimilated observations. Each member’s statistics is shown
by a coloured line, the mean and the spread of values are thin and thick black lines, respectively.
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5.1 Month Average Spread

Figure 15: Mean of ensemble mean values over March 1979 (left hand side), together with mean spread over
the same period (right hand side). The top row shows 1.5m temperature, the middle shows 10m wind speed and
the bottom row shows six-hourly precipitation.
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5.2 Rank Histograms

Figure 16: Rank histograms of observations against reanalysis ensemble members. The top row shows 1.5m
temperature and 10m wind, using station observations and the bottom row shows temperature and wind at
850hPa, using sondes. July 1980.

analysis since the areas of complex orography cause uncertainty in the model for smaller scale
variables and the limited availability of sea wind observations, together with larger values at sea
also cause larger uncertainty.

5.2 Rank Histograms

Figure 16 shows rank histograms of observations against the ensemble members for the month of
July 1980. The rank histograms all show the members as underspread against the observations,
because observations have their own uncertainty/representativeness error, which leads to the
most numerous ranks being external to the ensemble (0 and 20). Algorithms are available to
account for this, [Saetra et al., 2004], and they will be explored as part of the validation activity.
The ranks of the observations that are internal to the ensemble are similar, i.e. the interiors of
the histograms are reasonably flat, indicating that each ensemble member is equally likely and
suggesting that, when representivity is take into account, the ensemble spread is a reasonable
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5.3 RMSE of ensemble mean

Figure 17: RMS difference of random member with observations (red), mean with observations
(blue) and mean with random member (green). The top row shows 1.5m temperature and 10m
wind, using station observations and the bottom row shows temperature and wind at 850hPa,
using sondes. July 1980.

measure of uncertainty.

5.3 RMSE of ensemble mean

Figure 17 estimates the RMSE of the control, represented here by a randomly selected member
of the ensemble, and ensemble mean for the month of July 1980. The plots all show that the
ensemble mean has a smaller difference from observations than the control, indicating that the
truth is within the spread of the ensemble. The plots suggest that the RMSE of the mean is
reasonably consistent and of a reasonably small value for all variables shown.

5.4 Spread of the ensemble

Figure 18 compares the spread of the ensemble with the estimate of the RMSE of the ensemble
mean. Again, representivity of the observations is not taken into account and so the spread
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5.4 Spread of the ensemble

Figure 18: Spread of ensemble (blue) with RMS difference of mean and observations (red). The
top row shows 1.5m temperature and 10m wind, using station observations and the bottom row
shows temperature and wind at 850hPa, using sondes. July 1980.
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of the ensemble appears much lower than the estimated RMSE. The ensemble spread seems
to capture some, but not all, of the temporal variance in the RMSE. Most notably, peaks and
troughs in the spread coincide with peaks and troughs in the RMSE across all variables shown.

6 Summary

The ensemble reanalysis system has been finalised and production has begun. This system is
using variational bias correction and the Met Office surface analysis scheme in a regional context
for the first time. Due to a delay in production of ERA5, LBCs of the ensemble are deterministic
(ERA-Interim), but this has not caused a large reduction in the spread of the ensemble. The
majority of the spread in the ensemble is caused by the perturbations to the model, which are
provided by a random draw from an analysis increment archive.

Assimilation statistics indicate that the number of available observations is extremely low for
some cycles and that this has a detrimental effect on the quality of the reanalysis.

The ensemble is producing larger uncertainty in regions where the model is known to produce
less certain output (over complex orography for 1.5m temperature and precipitation and over sea
for 10m wind speed). Ensemble diagnostics suggest that, as desired, each member of the ensem-
ble is equally likely and the spread of the members encompasses the true state. The spread of
the ensemble peaks when the estimate of RMSE of the mean peaks, which suggests the ensemble
can be considered to be representative of the uncertainty in the mean.

Examination of the diagnostics presented here demonstrates that the ensemble is mostly behaving
as expected and with reasonable consistency with the observations. The behaviour and quality
of the ensemble will be examined in more detail in the validation exercise. This exercise will also
employ more sophisticated diagnostics which will aim to isolate model and observation error,
allowing a clearer examination of how closely the ensemble spread estimates the uncertainty.
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A Observations

The set of observations for assimilation comprises those processed for assimilation in the ECMWF
reanalyses, [Dee et al., 2011], supplemented with Met Office ground global positioning (GPS) ob-
servations and scatterometer winds, as detailed in Tables 3 and 4.

Operationally at the Met Office, observation data is quality controlled before being assimilated.
For the EURO4M reanalysis, a fixed ‘blacklist’ of observations was used for the two year period.
A fixed blacklist is less appropriate for a forty year period and so the new MUSLi system is used
to create new blacklists each month for surface, sonde and aircraft observations.

B Output Fields

Model level fields are output at six-hourly reanalysis times (00Z, 06Z, 12Z and 18Z) and all other
fields are output at six-hourly reanalysis times (00Z, 06Z, 12Z and 18Z) and at hourly forecast
times between these.

B.1 Multi - level fields

Model level fields are available on the UM’s model levels which are a Charney-Phillips staggering
between 10m above orography and the model top, which is a fixed radius from the centre of the
Earth (approximately 40km above the surface). Pressure level fields are available at 1000, 975,
950, 925, 900, 875, 850, 825, 800, 750, 700, 600, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20
and 10hPa. Height level fields are available at 15, 30, 50, 75, 100, 150, 200, 250, 300, 400, 500m
above orography. Availability of multi-level fields is given in table 5

B.2 Radiation fields

Albedo, evaporation, surface net solar (SW) radiation, clear-sky downward solar radiation, clear-
sky upward solar radiation, clear-sky downward thermal (LW) radiation, direct solar radiation,
surface solar radiation downwards, surface net thermal radiation, surface thermal radiation down-
wards, surface sensible heat flux, surface latent heat flux and skin temperature.

B.3 Fields at 2m above orography

Temperature, maximum temperature, minimum temperature and relative humidity

B.4 Fields at 10m above orography

Wind speed, gust and direction.
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B.4 Fields at 10m above orography
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B.4 Fields at 10m above orography
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B.5 Precipitation and moisture

Variable Model Levels Pressure Levels Height Levels
Pressure X X
Geopotential height X
Temperature X X X
U component of wind X X
V component of wind X X
Wind direction X
Wind speed X
Cloud Cover X X X
Relative humidity X X
Specific humidity X
Specific cloud ice water content X X X
Specific cloud liquid water content X X X

Table 5: Multi-level field output

B.5 Precipitation and moisture

Total precipitation, snow fall, total column water vapour.

B.6 Pressure (single level)

Mean sea pressure and surface pressure.

B.7 Cloud (single level)

Low cloud cover, medium cloud cover, high cloud cover and total cloud cover.

B.8 Land

Orography, land-sea mask, surface roughness, snow depth water equivalent, volumetric soil mois-
ture and soil temperature. Volumetric soil moisture and soil temperature are available on four
soil levels at depths 0.1, 0.35, 1.0 and 3.0m
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