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Abstract

In this report, we present the work on deliverable D2.12. Development steps towards a high-resolution
European ensemble  reanalysis  system are  shown placing emphasis  on verification  of  precipitation  as
Essential  Climate  Variable (ECV). We give an impression of the usability of the reanalysis system for
Climate  Change  Service  applications  and  detect  deficiencies  that  require  further  development.  Both
accuracy and uncertainty estimation capabilities of the system are examined. 

The  work  has  been  conducted as  part  of  Work  Package  2  on   Ensemble  data  assimilation  regional
reanalysis datasets committed under the EU-FP7-funded collaborative project entitled  Uncertainties in
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Ensembles of Regional Reanalyses (UERRA: Grant agreement no.: 607193, www.uerra.eu) in cooperation
with Dr. C. Schraff, DWD (Deutscher Wetterdienst, FE12).

The report is divided into two parts. In the first part, possible ways for the generation of an ensemble of
reanalyses are outlined. The proposed combination of ensemble nudging with a local ensemble transform
Kalman filter is not yet feasible. Technically, the implementation process of the data assimilation system
can be regarded as finished. However, due to a range of technical and system-relevant issues that are
outlined in the section hereafter, large temperature, moisture and precipitation biases occur. Therefore, we
do not yet consider it reasonable to use the system for the production of a reanalysis. The effort that has to
be  made  regarding  tuning  and  experimenting  with  the  system  has  been  underestimated.  However,
ensemble nudging is at a good stage and considered useful and stable. To provide an alternative for the
proposed EN-LETKF system in case that it will not reach a state that allows to use it for the generation of a
reanalysis data set, the performance of ensemble nudging is examined with a focus on precipitation. The
accuracy of the system, i.e. the spatio-temporal coherence of observations and each analysis member is
compared to the global reanalysis ERA-INTERIM, a regional  HIRLAM reanalysis  and the deterministic
high-resolution regional reanalysis COSMO-REA6. Moreover, we compare to a dynamical downscaling of
ERA-INTERIM using COSMO to demonstrate the value of data assimilation for reanalyses which can be
regarded  as  both  weather  and  climate  data  sets.  Subsequently,  we  demonstrate  the  probabilistic
capabilities of our ensemble reanalysis systems. Using +6h short-range forecasts from ECMWF-EPS as
reference  we  can  show  skill  for  an  experiment  spanning  the  month  of  June  in  2011.  All  in  all,  the
experiments prove that our ensemble nudging system for regional reanalysis has an added value. 

1  Possibilities for ensemble reanalysis production

UB's task as part of WP2 in UERRA is to provide a  regional ensemble reanalysis system as well as a proof
of concept high-resolution data set for Europe. In principle, three data assimilation schemes are available
to produce a regional ensemble reanalysis

• ensemble nudging (deliverable D2.11) based on the nudging scheme  (Schraff, 1997)

• the local ensemble transform Kalman filter (LETKF) that has been developed for the convective 

scale  (Schraff et. al 2015, submitted).

• a combination of the two that we denote EN-LETKF. 

The ensemble nudging component has been developed, tuned and delivered in D2.11. In the last months,
more extensive experiments have been performed whose evaluation is demonstrated in the deliverable on
hand. 

The LETKF for the regional model COSMO is currently under development at DWD and will be in pre-
operational mode replacing the nudging scheme in the foreseeable future. 

A link of ensemble nudging is considered particularly useful for reanalysis purposes as it combines their
positive features yielding low RMSE (LETKF) and a smooth time series with small error spikes (nudging)
(Lei et. al, 2012a).

In the next paragraphs, the three different systems are reviewed or introduced and their corresponding
advantages and disadvantages are highlighted.  
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1.1  Ensemble nudging based on deterministic nudging

Note that this paragraph is a review from deliverable D2.11 which has to be included for completeness.
Nudging performs a continuous relaxation of the prognostic variables of any numerical weather prediction
model  towards  observations  during  the  forward  integration  of  the  model.  Additional  tendency  terms
proportional  to  the  observation-model  equivalent  departures  are  introduced  directly  to  the  prognostic
equations. The analysis increments are finally spread to the target grid points within an area of influence.
Thereby, a spatial weighting is performed using vertical and horizontal structure functions (Schraff, 1997).
The temporal weighting function is designed such that observations are assimilated with maximal weight at

the  observation  time.  In  contrast  to  intermittent  3-dimensional  data  assimilation  schemes,  asynoptic
observations and very high frequent data can be assimilated at appropriate time.  Nudging in its current
implementation is not dependent on background or observation error covariance matrices. Instead, a static
nudging  coefficient  having units  of  inverse time determines the strength  by  which the model  state  is
corrected per model time step.  Unlike 4d-Var or the ensemble Kalman filter, nudging in its applied version
does not explicitly take into account flow-dependency. However, particularly due to its great performance-
cost ratio yielding good analyses at low computational costs without dependence on tangent linear and
adjoint models, nudging is used for many applications up to today (Stauffer and Seaman 1990, Stauffer et
al. 1991,  Seaman et al. 1995, Schraff 1997, Leidner et al. 2001, Otte et al. 2001, Deng et al. 2004, Deng
and Stauffer 2006, Schroeder et al. 2006,  Dixon et al. 2009, Ballabrera-Poy et al. 2009, Bollmeyer et al.
2015).

Due to the time-continuous manner in which the observations are assimilated,  nudging yields smooth,
physically consistent time series with little disturbance of the physical balances (e.g. Lei et al. 2012b). This
is  an  advantage  over  intermittent  techniques  like  the  ensemble  Kalman  filter,  where  the  sudden
introduction of large numbers of observations often leads to strong error spikes in the assimilation time
window (e.g. Hunt et al.  2004). Nudging is therefore considered an outstanding partner for techniques
combining two different data assimilation schemes incorporating their respective advantages. Especially in
reanalysis applications at high resolutions, a smoothness of time series should become an increasingly
desirable feature for future developments and applications. 

Applying  ensemble  nudging,  the  different  ensemble  members  are  nudged  towards  probabilistic
observations. Following e.g. Houtekamer et al. 1996, a probabilistic observation  is given by perturbing the
original observation o by means of a random perturbation o' sampled from a normal distribution o'~N(0, σo)
with  zero  mean  and  a  standard  deviation  given  by  the  observation  error  σo.  We  assume  normally
distributed, unbiased, stationary in time as well as spatio-temporally uncorrelated observation errors. The
latter  is  a  wide-spread assumption mostly  coming along with observation thinning and inflation  of  the
observation error variances (Lahoz et al. 2010).

The perturbation process of observations is implemented into the limited-area model COSMO as part of
the nudging scheme. To provide physically sound observations, those exceeding reasonable value ranges
are  corrected accordingly.  E.g.,  vertical  lapse  rates  becoming super-adiabatic  due to  perturbation  are
corrected to prevent an extensive rejection of the probabilistic observations. In principal, observations from
all used conventional observing systems including ACAR, AMDAR, TEMPS, PILOT, WIND PROFILER,
SYNOP,  SHIP and  DRIBU undergo  the described  perturbation  process  and  a  suitable  quality  control
thereafter.  We have decided to rely on the observation error estimates used by DWD. These have been
determined applying the  techniques of Hollingsworth and Lönnberg (1986) and Desroziers et al. (2005) to
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feedback data from other non-convection resolving NWP systems of similar resolution like COSMO.  The
latter  is  of  particular  importance  to  guarantee  for  a  reasonable  estimation  of  the  representativity
component. The DWD observation error estimates have mainly been used for the quality control in the
regional NWP system. Recently, their magnitude has been rechecked and partly reconfirmed or updated
using feedback output from the new LETKF data assimilation scheme. 

1.2 A local ensemble transform Kalman filter for the convective scale

In the COSMO priority project KENDA1 (Kilometer-scale  Ensemble  Data  Assimilation), a local ensemble
transform Kalman filter (LETKF) for the convective scale has been implemented under the direction of
DWD (C. Schraff, FE12). The implementation follows Hunt et. al, 2007. At the moment, the preparation of a
pre-operational mode is running. 

A LETKF is an effective version of an ensemble Kalman filter, whereby the analysis is a linear combination
of the background ensemble. In the DWD implementation, a square-root filter is applied to the analysis
covariance matrix to derive the analysis.  In “LETKF” the word “transform” means that  the background
covariance matrix is transformed into ensemble space in order to perform the analysis in a low-dimensional
sub-space leaving the problem to a strongly reduced rank. The word “local” describes that the covariance
matrix  is  localized  and  that  locally  independent  analyses  are  performed,  i.e.  domain  and  covariance
localization are applied. For reduced-rank Kalman filters that are confined to a subspace spanned by the
ensemble members, the degrees of freedom are too few to fit the number of observations. Moreover, the
low-rank sample covariance matrices contain a great  deal  of  spurious long-range correlations yielding
spurious analysis increments. These rank deficiency problems can be reduced if localization is applied.
Making use of  domain localization,  the number  of  degrees of  freedom of  the  sub-space in  which the
analysis  is  constructed  is  strongly  increased  as  each  grid  point  is  updated  using  a  different  linear
combination of the ensemble perturbations. The fact that only observations in near-distance to the grid
point are used assures that the analysis at each grid point is not influenced by distant observations which
would be induced by long-range correlations in the background covariance matrix. It is important that near-
by grid points see approximately the same observations so that the analysis is balanced and discontinuities
leading for example to artificial divergences can be avoided. Covariance inflation additionally suppresses
spurious correlations. It is not trivial to choose the right function for covariance localization. This is an area
of  active  research  (Flowerdew,  2015,  Perianez,  2014).  Furthermore,  the  choice  of  a  good  degree  of
localization is  expensive and tuning-intensive as sampling errors,  computational  efforts and imbalance
errors need to be balanced. In the current implementation of KENDA-LETKF, the localization in the vertical
is fixed while a simple adaptive localization method is applied in the horizontal. 

The LETKF algorithm works as follows. Firstly, a background ensemble is computed. Then, the ensemble
perturbations are used to estimate a flow-dependent  sample background error  covariance matrix.  The
analysis mean state (best linear unbiased estimate) is computed adding the ensemble mean forecast to a
weighted sum of the ensemble perturbations which are nothing else than the deviations of the different
ensemble forecasts from the ensemble mean. The weights are determined depending on the deviation
between the ensemble members and the observations.  Subsequently,  the analysis error  covariance is
estimated which is followed by an identification of the analysis perturbations as a linear combination of the
forecast perturbations. The analysis perturbations are determined such that they reflect the analysis error
covariance. 

1 See http://www.cosmo-model.org/content/tasks/priorityProjects/kenda/default.htm
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Since the background ensemble usually underestimates spread, different methods need to be applied to
inflate the ensemble variance. At DWD, experiments with different methods have been performed (see
Schraff et. al 2015, submitted). E.g. multiplicative covariance inflation compares the estimated background
and observation error covariance matrices to the real deviations obtainable from observation-background
statistics.  Thereby,  a  lack  of  variance  can  be  determined  which  can  subsequently  be  multiplicatively
inflated.  Note that  the inflation  factor  varies in  time and space and has upper  and lower  boundaries.
Another  method that  aims at  a boost  of  ensemble variance is  relaxation to prior  perturbation (RTPP).
Thereby, the analysis perturbations are relaxed towards the background perturbations. A further possibility
is relaxation to prior spread (RTPS). Above all, experiments have shown that perturbed lateral boundary
conditions are essential to obtain a suitable spread. Particularly experiments with an ICON-ensemble have
resulted in fundamental improvements. The system has proven to benefit from a perturbation of the soil
moisture in the soil moisture analysis which improves spread and scores in the boundary layer. Application
of latent heat nudging to all ensemble members has shown to be very beneficial. 

At the moment, the KENDA experiments make exclusively use of conventional observations. It could be
shown that the LETKF is already superior to nudging using this set of observations, so that little disagrees
with introducing it to operations at this point of time, even though the assimilation of modern observations
is not yet ready for operational use. The latter is under extensive development and is expected to lead to
further improvement of the convective-scale analysis and forecast quality at DWD. For further details we
refer to Schraff et. al 2015, submitted. 

1.3 Theoretical advantages of combining ensemble nudging with LETKF

Building on the findings  described in  the foregoing sections,  a combination of  ensemble  nudging and
LETKF can be considered very  useful  for  future  developments.  On the one hand,  ensemble  nudging
proves to have a comparably good spread. Thus, providing a nudging ensemble to the LETKF may reduce
the necessity  of  covariance inflation,  RTPP,  RTPS etc.  On the other  hand,  observations from modern
observing systems like GPS, satellite data or radar data could be assimilated incorporating the LETKF to
ensemble  nudging.  Application  of  nudging  over  long  time-windows  has  the  merits  that  it  provides
continuously physically-balanced time series and moreover a model trajectory that is close to the one of
the true atmosphere over the whole reanalysis time span. 

1.3.1 Design of the system and practical problems

The  EN-LETKF  system  makes  use  of  a  4-day  integrated  full  nudging-ensemble  that  comprises  20
members as initial conditions. Currently, a six-hourly LETKF-cycle is run that is provided with a nudging-
ensemble  instead  of  the  usual  short-range  forecast  as  a  background.  The  observations  need  to  be
distributed between the systems. Due to their quasi-continuous availability, we assimilate the observations
from AIRREP reports in  ensemble nudging.  Thus,  the ensemble is  henceforth only generated through
upper-air wind and upper-air temperature perturbations. In the LETKF, observations from SYNOP reports,
wind profilers as well  as TEMP reports are assimilated.  We employ RTPP together with multiplicative
covariance inflation. So far, we observe a strong dry-bias in humidity, precipitation as well as a cold-bias in
screen-level temperature. This may be due to the following reasons:

(1.) In the KENDA-experiments (see Schraff et. al 2015, submitted) it has been observed that at least
40  members  are  needed  to  achieve  a  meaningful  ensemble  variance  and  thus  a  high-quality
analysis. We consider 40 ensemble members a high number for reanalysis purposes and need to
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reconsider the performance-cost ratio.

(2.) At  the  point  of  time  of  application  for  UERRA  it  had  been  expected  that  the  integration  of
assimilation of modern observations at DWD would be at a more developed stage. This would have
allowed for assimilating all conventional observations in ensemble nudging and only the modern
ones in LETKF, presumably leading to an improvement in analysis quality.  To date, we have to
divide  the  set  of  conventional  observations  between  the  two  data  assimilation  systems.  We
consider it possible that the observation density thus becomes unfeasibly low for the LETKF (which
is particularly critical for the adaptive covariance localization) leading to undesirable and so far non-
comprehensible results.

(3.) The spread of the nudging ensemble is substantially degraded assimilating only AIRREPs instead
of the full set of observations. Thus its original advantage of yielding more spread than the normal
background  ensemble  becomes  neglectable.  Furthermore,  no  humidity  observations  are
assimilated  in  ensemble  nudging  in  the  current  version  which  subjects  the  model  fully  to  the
influence of the lateral boundary conditions. 

(4.) As mentioned, the KENDA-LETKF has proven to benefit heavily from perturbed lateral boundary
conditions. So far, we do not have any global reanalysis ensemble available which could be used to
enhance spread. Moreover, it is rather unlikely that a 40-member global ensemble reanalysis will
come into existence in the foreseeable future. It is envisaged to prepare a global ICON-ensemble
reanalysis.  However,  this  is  another  great  reanalysis  effort  that  must  be  seen  as  a  future
perspective that will offer more possibilities to our regional reanalysis work. 

(5.) As described in section 1.2, the LETKF is sensitive to a range of parameters needed for domain
and covariance localization. The parameters, such as a localization radius, have been determined
for the convective scale (a 2.8 km COSMO version) in extensive tuning experiments at DWD. So
far, we have not retuned the parameters for the 12 km scale. It is most likely that the parameters
suitable for the convective scale are not usable for the 12 km scale. 

It can be summarized that the recent findings at DWD concerning the LETKF, such as an unconditional
need  of  perturbed  boundary  conditions  and  a  number  of  at  least  40  ensemble  members  were  not
foreseeable at the point of time of application for UERRA. At this point, the LETKF was at the stage of
implementation  and  not  yet  at  an  experimentation  level.  Additionally,  the  combination  of  LETKF  and
ensemble nudging seems to be little meaningful as long as the observation stream cannot be expanded
using satellite, radar or GPS data. Subdividing the conventional observation stream between LETKF and
ensemble nudging we run into problems that do not seem to be trivial at this stage. However, the EN-
LETKF seems to have great potential given that its needs are fulfilled so that the idea should not be put
aside. Particularly for the convective scale the combination should demand further attention. In case that
the ongoing research and experiments with the EN-LETKF do not  result  in  a  suitable quality,  of  the
system, ensemble nudging data assimilation system for the production of a 5-year test reanalysis. This is
advantageous in many respects, above all, because we could rely on a well-tuned and highly developed
implementation  of  nudging  at  a  great  performance-cost  ratio  and  with  good  uncertainty  estimation
capabilities. In the next sections, we evaluate the performance of ensemble nudging experiments. 
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2 Experiments and comparison data sets

2.1 Experimental set-up

Ensemble nudging is implemented in the limited-area NWP model COSMO of the Consortium for  small-
scale modeling. The model is non-hydrostatic and targeted at the representation of meso-alpha and meso-
beta processes. 

The version of COSMO-EU that is now running at DWD in operational mode for several years, uses a grid
spacing of 7 km. For the ensemble reanalysis purpose we adapt it to a grid resolution of 12 km and to the
geographical extension of the CORDEX-EUR11 domain (Giorgi, 2009). In the employed version, COSMO
has 40 hybrid levels in the vertical. The soil model TERRA makes use of 7 vertical layers going down to
approximately 14.5 m depth.  The model equations are solved on a rotated latitude-longitude grid  that
avoids a convergence of the meridians and allows for equidistant grid points. The domain consists of a
number of 424 x 412 grid points. The exact domain specification is summarized in Table 1, Figure 1 shows
its geographical extension. 

Table 1: Domain specification of CORDEX-EUR11.

CORDEX-EUR11

Rotated north pole coordinates -162.0°, 39.25°

Lower left corner

 (rotated coordinates)

-23.375°, -28.375°

Grid spacing 0.11°

Number of grid points (lambda x phi) 424 x 412

Figure 1:  CORDEX-EUR11 domain. 

Since there is no suitable global reanalysis ensemble available yet, we make use of the global ECMWF
ERA-INTERIM reanalysis as initial and boundary data. To allow for a 3-hourly update of the boundary data
we use the analyses at 00 and 12 UTC and reforecasts at +03, +06 and +09 h for consistency reasons.

ERA-INTERIM has 0.7° grid resolution (80 km, but used at 0.5º).

Nudging analyses need to be performed in model space. Therefore the range of observations available for
assimilation is limited to conventional observations. The observation types and assimilated quantities are
summarized in Table 2. Note that the perturbation process of observations is not restricted to a specific
variable or observing system, but rather all observations that have status “active” after the quality control
are perturbed to generate the nudging ensemble.  Additionally to nudging, three offline analysis schemes
are applied including analysis of the snow depth, sea surface temperature (SST) analysis and a variational
soil moisture analysis (SMA). The snow analysis is performed at 00, 06, 12 and 18 UTC. The SST analysis
is performed once a day at 00 UTC. The SMA is applied daily at 00 UTC. For further details we refer to
(Bollmeyer, 2015 or Schraff and Hess, 2003). The process cycle is depicted in Figure 2. 
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We  present  two  case  studies  comprising  a  winter  month  (December  2011,  referred  to  as  “winter
experiment”) and a summer month (June 2011, referred to as “summer experiment”). Both comprise 20
ensemble  members  and  a  control  run  which  is  simply  a  nudging  run  with  original,  unperturbed
observations. We refer to the ensemble nudging experiments as “C-EN”.

Table 2: Observation variables assimilated from different reports. 

Reports Assimilated observation variables

Radiosondes PILOT Upper-air wind

TEMP Upper-air wind, temperature, humidity, screen-level wind, temperature,
humidity, geopotential

Aircrafts AIRREP Wind, temperature

AMDAR Wind, temperature

ACARS Wind, temperature

Wind profiler Upper-air wind

Surface observations SYNOP Surface pressure, screen-level wind, 2m humidity

SHIP Surface pressure, 10m-wind, 2m-humidity

DRIBU Surface pressure, 10m-wind, 2m-humidity
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 Figure 2: Process cycle of the reanalysis system, adapted from Bollmeyer, 2015, Figure 2. 

2.2 Data sets for comparison

We consult different reanalysis, downscaling and observation data sets for comparison. These comprise
ERA-INTERIM global reanalysis data, a regional reanalysis HIRLAM, a dynamical downscaling from ERA-
INTERIM using COSMO at 6 km grid spacing, a deterministic nudging reanalysis using COSMO at 6 km
grid spacing and rain gauges observations from the German SYNOP network. The specifications of the
data sets are summarized in the following tables.

Table 3: Reanalyses used for comparison.

Institution Time span Time steps Model + DA Grid 
spacing

Obs 
stream

Quantity used References

ERA-INTERIM ECMWF June 2011 

Dec  2011

12-hourly
analysis
window,

00, 12 UTC
reanalyses 

+03,+06,+09
reforecasts

IFS

+ 

4D-Var

0.5 ° Conventi
onal +

satellite 

3-hourly

precip

Dee, 2011

Hirlam SMHI June 2011 12-hourly
analysis
window,

00, 12 UTC
reanalyses 

Hirlam

+ 

3D-Var

0.2° Conventi
onal

3-hourly

 precip 

Undén et al. ,
2002

10



Project: 607193 - UERRA                                                                                                                         

+03,+06,+09
reforecasts

COSMO-REA6 UB June 2011 Continuous
reanalysis

00,03,06,09,1
2,15,18,21

UTC 

COSMO 

+

 Nudging 

0.055° Conventi
onal 

3-hourly

 precip

Bollmeyer,
2015

Table 4: Ensemble prediction system used as a benchmark.

Institution Time 
span

Time steps Model   Grid spacing Number of 
members 

Quantity 
used

References

ECMWF-EPS ECMWF June
2011

Dec
2011

00UTC + 06

12UTC + 06

IFS 0.25° 50 6-hourly
precip 

Table 5: Dynamical downscaling used for comparison.

Institution Time 
span

Time steps Model  + 

DS 
reanalysis 

Grid 
spacing

Quantity 
used

References

COSMO-
DOWN6

UB June
2011

00,03,06,09,12,15,18,21
UTC 

COSMO 

+

 ERA-
INTERIM

(3-hourly)

0.055° 3-hourly
precip 

Bollmeyer,
2015

Finally,  Figure 3  shows the spatial  distribution of  about  1000 rain  gauge observations from the DWD
SYNOP network which provide the verifying observation used in the evaluation section. We employ both 3-
hourly and 6-hourly accumulated precipitation sums. Note that the verification comprises only the German
subdomain of the CORDEX-EUR11 area. The observation-grid point assignment is carried out using the
method of nearest-neighbour.
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Figure 3: Rain gauge stations in the German subdomain providing accumulated precipitation sums as verifying observation to
evaluate the performance of ensemble nudging. 

3 Evaluation of performance

3.1 Developing a guideline for evaluation

Users of  regional reanalyses need information about  the quality and usability of the Essential  Climate
Variables (Bojinski, 2014). It is self-evident that some variables are more valuable for specific applications
than others for which the user should rather rely on other climate data sets such as ERA-INTERIM, satellite
climatologies like  CM-SAF,  SYNOP data,  dynamical  downscalings  or  gridded observations  like EOBS.
However, since the establishment of climate centres (such as the Copernicus Climate Change Service), the
development of regional reanalysis systems and even more the estimation of their uncertainties are still in
their infancy, some pioneering work has to be done to figure out the advantages and disadvantages of the
different Essential Climate Variables in the available data sets. This may lead to further generations of
regional reanalyses that will focus on the elimination of potential weaknesses of the systems. 

As  a  kind  of  “first  guess”,  some  regional  reanalysis  variables  are  presumed  to  be  superior  to  their
representation in other climate data sets. We refer to that as „added value“. During the initial development
process of the reanalysis system it is not possible to check for the value of the whole set of Essential
Climate Variables. In a first step, we focus on precipitation. Thereby independence of the verifying variable
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is achieved and the necessity of computing short-range reforecasts which merely represent a downstream
product  can  be  avoided.  Moreover,  reforecasts  may  neither  be  totally  independent  of  the  verifying
observation, at least in the case of ensemble nudging. This can be traced back to the form of the temporal
nudging weighting functions which assign a non-zero weight to observations with observational time in the
near future (this does not hold for precipitation unless latent heat nudging is applied, then the analysis
would be dependent on radar observations not on rain gauges). We hypothesize the following indication of
added value of precipitation in regional reanalysis (RR): 

• RR exhibit spatio-temporal completeness compared to rain gauge observations.

• RR are  supposed  to  have  3-dimensional  physical  and  inter-variable  consistency  compared  to

gridded observations.

• RR have higher grid resolution so that processes can be represented non-hydrostatically. Moreover

orographic  effects,  land  ocean  contrasts  and  land  use  effects  can  be better  represented.  The
observation stream similar to the one used for the production of the lateral boundary conditions
(global  reanalysis)  is  assimilated on smaller  length scales which yields  different,  scale-relevant
information. Mesoscale representation of precipitation should lead to better verification than large-
scale representation in global reanalyses. 

• Due to data assimilation yielding spatio-temporal accuracy RR are supposed to be usable as both

climate and weather data sets whereas dynamical downscaling can only reproduce climatological
distributions of variables. This implies that RR exhibits accuracy whereas dynamical downscalings
do not. In particular the latter do not show sharpness from the point of view of  forecast verification
(Murphy and Winkler, 1987). 

We test the latter two hypotheses and put the first two aside. We go through the following list of reanalysis
attributes to test the performance and added value of the system:

• Accuracy which describes  the spatio-temporal  correspondence of  model  and observations.  We

investigate accuracy by means of 3-hourly accumulated precipitation and employ the log odds ratio
and proportion correct as a measure of performance. 

• Attributes of probabilistic reanalysis skill that we observe are

• Reliability  which is a statistical indistinguishability of the verifying observations and the

ensemble members as well  as an agreement  of  the ensemble probabilities with the
corresponding observed frequencies.  Climatology  is  perfectly  reliable  even though it
says nothing about the coherence of observations and model. Reliability can be affected
by model bias. We investigate reliability using analysis rank histograms and reliability
diagrams as well as the reliability component of the decomposed Brier score. 

• Spread-skill relationships that measure the spread's average capability of estimating the

analysis  error.  EPS spread  is  supposed  to  resemble  the  uncertainty  underlying  the
forecast which depends on the “errors of  the day”.  It  indicates predictability,  i.e.  it  is
supposed to measure the mean deviation to observations that the forecast will exhibit. In
contrast, the spread of an ensemble reanalysis will estimate the uncertainty that evolves
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from the component of the NWP system being perturbed as well as random errors that
the perturbations project on. E.g. perturbing the lateral boundary conditions may yield a
different  spread  than  perturbing  the  observations.  Obviously,  only  perturbing  all
uncertain  ingredients  of  the  NWP  system  using  profound  error  estimates  and  an
extensive number of ensemble members would allow for a comprehensive sampling of
the true subspace of uncertainty. 

• Resolution which is the ensemble's ability to assign different ensemble pdfs to different

events. It depends strongly on the quality of the model and on the kind of ensemble
generation  method.  Resolution  is  connected  to  discrimination   which  measures  if
different  observed  outcomes  are  correctly  distinguished  between  by  the  forecasts.
Resolution can be investigated by employing the resolution component of Brier score,
but also by the Relative Operating Characteristics curve. 

For  future evaluation we envisage to utilize methods like kernel  dressing or  fitting suitable parametric
distributions  to  obtain  a  realistic  interpretation  of  the  ensemble  probabilities  at  a  limited  number  of
ensemble members. However, to obtain a first impression of the performance of the ensemble nudging
system we employ a frequentist interpretation, i.e. the probability for a specific event is estimated by the
fraction of ensemble members analysing the event. 

Note  that  the  verification  scores  and  functions  used  in  this  deliverable  can  be  found  in  Jollife  and
Stephenson, 2012 and citations of the corresponding original publications  therein. 

3.2 A first look on precipitation fields using monthly precipitation climatology
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Figure 4: Monthly precipitation climatology for June 2011. a) Control run of ensemble nudging.    

b) to d) Arbitrarily chosen ensemble members. 

Figure 5: Monthly precipitation climatology for           Figure 6: Diurnal cycle of precipitation  for reanalyses.                            

ERA-INTERIM, June 2011.  and rain gauges. 

Figures 4 and 5 show monthly integrated precipitation for the nudging control run and three ensemble
members  as  well  as  for  ERA-INTERIM.  One  of  the  main  applications  of  reanalysis  data  is  climate
monitoring which among other things is interested in the temporal evolution of monthly climatologies or
anomalies from the long-time mean2. Visual observation of these climatologies already reveals important
features of the ensemble nudging reanalysis. On the one hand, mesoscale variability catches the eye when
comparing to ERA-INTERIM. On the other hand, the nudging ensemble members exhibit enough similarity
to exclude randomness that might be induced by the observation perturbations, but at the same time a
degree of variability that indicates uncertainty in the details of the precipitation patterns. 

Figure  6  displays  the  diurnal  cycle  of  precipitation  (mm/3h)  for  ERA-INTERIM,  Hirlam,  the  ensemble
nudging control run (C-EN-CTRL), ensemble nudging (C-EN), COSMO-REA6 (C-REA6) and rain gauge

2 See  https://www.wmo.int/pages/themes/climate/climate_monitoring.php
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observations (OBS). For more details concerning the data sets see section 2.2 of this deliverable. It is a
well-known  problem  that  COSMO places  the  precipitation  maximum several  hours  too  late  (see  e.g.
Bollmeyer,  2015).  This  can  be  observed  for  all  reanalyses.  However,  the  upper  limit  of  the  nudging
ensemble is capable of reaching the maximum value, even though shifted in time. Thus, the observation
perturbations have a positive impact on the representation of the diurnal cycle of precipitation. Secondly,
the diurnal cycle gets more pronounced with increased resolution. Surprisingly, COSMO-REA6 does not
have a significantly better diurnal cycle than C-EN-CTRL which has only half of the grid spacing.

3.3 Measuring performance of three-hourly integrated precipitation

To obtain an impression of the performance of precipitation in the reanalysis experiments, we make use of
a  contingency  table  for  binary  events.  As  verifying  observation  we  use  about  1000  rain  gauge
measurements (see Figure 3). We are both interested in the agreement of the climatological distribution of
precipitation events in reanalysis and observations using the corresponding marginal distributions and in
their spatio-temporal coherence represented by their joint distributions. To investigate the first aspect we
employ the frequency bias given by

FB=
a+b
a+c

FB∈[0,∞] .

It compares the number of „yes events“ in the reanalysis (hits „a“ and false alarms „b“) to the number of
true „yes events“  (hits „a“ and misses „c“). The frequency bias disregards the spatio-temporal coherence of
observations and model.  However, this is considered by the log odds ratio which is obtained by

LOR=log ( adbc ) LOR∈[−∞ ,∞] .

Therein, „d“ are the correct negatives. The log odds ratio gives great weight to the correct negatives (as
these usually represent the main part of the events) so that it tends to assign better scores to rarer events.
It measures the ratio of the odds of making a hit to the odds of making a false alarm. The proportion correct
score compares the correctly captured events to all events

PC=
a+d

a+b+c+d
PC∈[0,1] .

It is very useful, however, for rare extreme events the proportion of possible hits becomes so low that it is
not longer meaningful. Therefore we introduce a weighted proportion correct, which is weighted by means
of the probability of detection. Thereby it allows to distinguish between accurate and non-accurate systems:

wPC=
a+d

a+b+c+d
∗

a
a+c

wPC∈[0,1] .

In the following, we focus on an evaluation of the summer experiment, since to date we do not  have all
reanalyses available for comparison for the winter experiment. The frequency bias displayed in Figure 7a
shows that the nudging ensemble underestimates the “yes events” at the lower thresholds, particularly at
2.5 and 5 mm. The obs perturbations have a positive impact as they increase the number of yes events in
the ensemble  members compared to the control run (C-EN-CTRL) which is presented in a light blue.
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Ensemble nudging is significantly closer to a perfect FB of 1 than ERA-INTERIM (red) and Hirlam (orange)
which produce too many events of small precipitation amounts and too few events at the higher thresholds.
The  deterministic  nudging  reanalysis  (COSMO-REA-6)  (darkblue)  at  a  grid  resolution  of   6  km  is
comparable to C-EN at the smaller thresholds. From 10 mm upwards the observation perturbations are
very beneficial regarding frequency bias as the whole ensemble outperforms COSMO-REA6 and C-EN-
CTRL. The outliers of the ensemble even overestimate the extremer events. A clear advantage of C-EN
compared to Hirlam and ERA-INTERIM can be observed. The COSMO dynamical downscaling from ERA-
INTERIM to 6 km (green)  has a frequency bias competitive or even superior to to the one of C-EN which
proves its usability for climatological studies that focus on frequencies.

Regarding the log odds ratio shown in Figure 7b, the downscaling is by far worse. Here, the added value of
both regional and global reanalysis which employ data assimilation to keep the model trajectory as close
as possible to the true trajectory of the atmosphere becomes obvious. At the lower thresholds, Hirlam,
ERA-INTERIM and ensemble nudging are roughly comparable, whereas at 5 and 10 mm the first two are
better.The coarser resolved reanalyses tend to produce smaller numbers of events at the higher thresholds
(see frequency bias) so that they have less hits, but also more correct negatives which have the main
weight in the score. The control run lying in the upper quantiles of the nudging ensemble indicates that the
obs perturbations lead to more precipitation by destabilizing vertical profiles, however, not necessarily in
the right places. This leads to significantly lower numbers of correct negatives at the high thresholds which
in turn yields a lower log odds ratio. COSMO-REA6 and C-EN-CTRL benefit from their higher resolution
which  allows  for  a  representation  of  extremer  precipitation  amounts.  However,  the  observation
perturbations degrade the accuracy of extremer events (compare the ensemble to the control run) as they
place the precipitation to the wrong locations yielding lower amounts of correct negatives that lead to a
lower log odds ratio. 

The proportion correct in Figure 7c  proves the superiority of COSMO-REA6 and C-EN over Hirlam and
ERA-INTERIM at the lower thresholds. Here, it shows that COSMO-REA6 does have more accuracy than
the other reanalyses (see Figure 7d). At 2.5 and 5 mm all reanalyses are fairly comparable. For the higher
thresholds, the proportion correct is weighted by the probability of detection which reveals significantly
more accuracy of the higher resolved COSMO reanalyses. At 15 mm the wPC tends to zero for Hirlam and
ERA-INTERIM.  At  20 and 25 mm decision thresholds  the only  reanalysis  that  maintains  a  degree of
accuracy is COSMO-REA6. 
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Figure  7: a) Frequency bias, b) log odds ratio, c) proportion correct and d) weighted proportion correct of the summer ensemble
nudging experiment in comparison to ERA-INTERIM (red), Hirlam (orange), COSMO-REA6 (dark blue), C-EN-CTRL (light blue)
and COSMO-Downscaling (green). 

Conclusions:

• The obs perturbations have a positive impact on the frequency bias.

• The  obs  perturbations  tend  to  degrade  accuracy  at  the  extreme  thresholds,  therefore  the

uncertainty  estimation at  the  high  thresholds  cannot  be expected to  be  meaningful  at  a  small
ensemble size. 

• C-EN has added value compared to ERA-INTERIM and Hirlam. This expresses in
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• a significantly better frequency bias yielding value for climatological studies.

• more accuracy which is particularly proven by the proportion correct and its weighted

version.

▪ particularly the representation of extreme events is significantly better than in the

coarser resolved reanalyses.

• C-EN has added value compared to the dynamical downscaling of ERA-INTERIM using COSMO at

6 km grid spacing

▪ a superior accuracy of C-EN is shown both by the log odds ratio and by the

proportion correct.

Thus all hypotheses regarding the added value of the representation of precipitation in regional reanalyses
(see  section  3.1)   could  be  proven  for  the  summer  experiment  with  the  ensemble  nudging  regional
reanalysis system. In the next sections we examine the probabilistic and uncertainty estimation capabilities
of the system.

3.4 Capability of uncertainty estimation and reliability

The analysis rank histograms for 3-hourly accumulated precipitation shown in Figure 8 provide a measure
of  reliability.  Reliable  ensemble  systems  consist  of  ensemble  members  that  are  statistically
indistinguishable  and  sample  the  true  distribution  of  possible  outcomes.  In  analysis  rank  histograms,
deviations from the true pdf (or the observational pdf that may be contaminated by observational errors)
can express as a bias, i.e. systematic error in the expectation value of the pdf (if it is a normal distribution).
Another problem is under-dispersiveness meaning that the sampled pdf is too sharp. The opposite problem
is over-dispersiveness. 

To avoid artefacts due to a limited sample size we exclude the all-zero events from the data sets (both
observation and all ensemble members indicate zero precipitation, usually the observation would obtain a
random rank drawn from a uniform distribution). 

The analysis rank histogram for the summer experiment displayed in the upper picture of Figure 8 shows
both a weak low- and a high-bias. The high-bias can be traced back to events that are not captured by any
of the ensemble members. This is presumably a matter of extreme events. The low-bias arises from events
for which the whole ensemble over-estimates the precipitation. The experiment has a spread-skill ratio of
0.79. Here, spread is measured in terms of standard deviation and the model-obs deviation in terms of
RMSE. 

The winter experiment shows optically more pronounced under-dispersiveness and achieves a weaker
spread-skill ratio  (0.67). This may indicate that the uncertainty estimation works slightly better for summer
conditions. However, a larger sample size would allow to divide the data into subsets to obtain further
insight into biases in dependence of thresholds and locations. 

The reliability diagrams shown in Figure 9 are computed based on 6-hourly accumulated precipitation from
+6h ECMWF-EPS forecasts started at 12 and 00 UTC and based on C-EN reanalyses at 06 and 18 UTC.
The observed relative frequencies are conditioned on the  ensemble probabilities. The error bars are so-
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called consistency bars which are estimated based on consistency sampling following Bröcker and Smith,
2007. The method was developed to cope with the fact that not even a perfectly reliable NWP system
would yield an exactly diagonal diagram due to limited sample size. In one resampling cycle,  the whole set
(N) of reanalysis probabilities is sampled into a  new order. A corresponding set of binary observations is
generated  drawing  an  independent  uniformly  distributed  random  variable  of  sample  size  N  which  is
assigned 1 where it is smaller than the resampled reanalysis probability and 0 elsewhere (index per index).
By definition, the resampled reanalysis set is reliable for the new binary observations. In our case, this
cycle is repeated 5000 times. We plot bars that extend from the 5% to the 95% quantiles. Thus, where the
reliability curve falls within the consistency bars, it is reliable. 

Figure  8:  Analysis  rank  histograms computed  from 3-hourly  accumulated  precipitation  using  rain  gauge observations  in  the
German subdomain.

At 0.1 mm decision threshold,  a strong over-forecasting can be observed for  the ECMWF-EPS for  all
probabilities. At 1 mm the reliability improves, but the nudging ensemble is still  closer to the diagonal.
Similar holds for the higher thresholds (not shown here). The consistency bars show that neither of the
systems is perfectly reliable. 
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Figure 9 Reliability diagrams, C-EN (top) and ECMWF-EPS (bottom) for 0.1 mm (left) and 1 mm (right), Brier reliability.

The superiority of C-EN with respect to reliability is confirmed by the reliability component of the Brier score
(for a definition, see Hersbach 2000) displayed on the bottom of Figure 9 for the summer experiment. It is
much closer to zero for C-EN and even stays there after spatial  averaging to increasingly coarse grid
spacings (dashed lines). Towards higher thresholds the Brier reliability of the ECMWF-EPS increases. For
the winter experiment we obtain similar results (not shown here).

It can be concluded that the nudging ensemble is more reliable than the ECMWF-EPS for the chosen time
span and subdomain considering 6-hourly integrated precipitation sums. The analysis rank histograms for
3-hourly  accumulated precipitation  indicate  that  the  ensemble  has weak  biases at  both  low and  high
precipitation amounts. It tends to over-forecast smaller precipitation amounts and under-forecast extreme
precipitation. This is rather a problem of grid resolution and convection schemes, i.e. a matter of model
biases, than of ensemble generation.

Conclusion: 

• Here, the C-EN is more reliable than the ECMWF-EPS short-range forecasts. 

• The uncertainty estimation capabilities concerning precipitation estimated by the spread-skill ratio

are okay, but improvable. 

Figure 10: Roc curves for the ECMWF-EPS (grey) and C-EN (black) for winter (continuous lines + points) and summer (dashed
lines + triangles) experiments at a threshold of 0.1 mm. Brier resolution component for 5 different thresholds for ECMWF-EPS and
C-EN with the latter averaged to coarser resolutions shown by the dashed and pointed lines (summer experiment). 

3.5 Resolution

The  ROC  curve  displayed  in  Figure  10  shows  the  resolution  of  the  ensemble  nudging  system  in
comparison to the ECMWF-EPS based on 6-hourly precipitation sums accumulated to 06 and 18 UTC.
The ROC curve is a signal detection curve for binary data whereby the hit rate is displayed versus the false
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alarm rate over probabilistic decision thresholds (0 to 1 by 0.1). In a perfect ensemble system the curve
would run from (0,0) to (0,1) to (1,1), i.e. low decision thresholds correspond to high hit rates and  high
false alarm rates whereas higher decision thresholds should come along with high hit rates and low false
alarm rates. That is the more confident the ensemble is about the occurrence of an event the better the hit
rate and the lower the false alarm rate should be. The closer the curve is to the diagonal the less the
ensemble system can discriminate between events and the less resolution it  has. The ECMWF-EPS is
displayed in grey and C-EN in black. 

 The summer  experiments are illustrated as dashed lines with triangles and the winter experiments as
continuous lines with points. Both systems are able to discriminate between different events. However, for
0.1 mm ensemble nudging is shifted to pairs of lower false alarm rates and lower hit rates whereas the
ECMWF-EPS is  shifted to pairs of higher hit rates coming along with higher false alarm rates. Reason for
that  is  presumably  the previously  discussed problem of  coarser  resolved models  that  produce higher
numbers of small-amount precipitation events yielding higher hit  rates together with higher false alarm
rates. 

The area under the ROC curve is equivalent  at 0.1 mm for both systems and both experiments.  The
resolution  component  of  the  Brier  score  confirms  that  the  resolution  of  ECMWF-EPS  and  C-EN  is
comparable for all regarded thresholds. 

Conclusion: 

Here, the resolution of C-EN and ECMWF-EPS short-range forecasts is comparable.

Figure 11: Spatial distribution of the brier skill score the summer (left) and the winter experiments (right).
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3.6 Skill of C-EN using ECMWF-EPS as reference

Skill describes the quality of a NWP system compared to a benchmark. We assess the probabilistic skill of
the ensemble nudging system using the ECMWF-EPS as a reference. As metrics we employ the Brier skill
score (BSS) as well as the continuous ranked probability skill score (CRPSS). The CRPS is nothing else
than the Brier score integrated over an infinite number of decision thresholds so that it considers the full
range of precipitation amounts. Both skill scores are defined as

SS=1−
S

S ref

,

where S can be replaced by any of the score metrics and Sref  is the reference system's score. The Brier
score is given by 

BS=
1
N
∑
t=1

N

(p t−ot)
2.

Therein, pt is the ensemble probability while ot  is a binary observation for a decision threshold. N is the
sample size that may include different locations and time steps. The CRPS is given by

CRPS=∫
−∞

∞

(P ( x)−Pa (x))
2dx with 

P ( x)=∫
−∞

x

ρ( y)dy and 

Pa( x)=H ( x−xa) . 

It  is  the difference between the predicted (in our  case analysed)  and occurred cumulative distribution
functions  P(x)  and  Pa(x).  H  is  the  Heaviside  function.  Note  that  both  Brier  score  and  CRPS can  be
decomposed into a reliability, resolution and uncertainty part (Hersbach, 2000 for the CRPS and Murphy,
1973).   The  skill  scores  are  computed  for  6-hourly  accumulated  precipitation  at  06  and  18  UTC.  +6
ECMWF-EPS forecasts of precipitation are used as a benchmark. The Brier skill score for 1 mm threshold
displayed in Figure 11 shows a local improvement over the ECMWF-EPS of up to 90% for the summer
experiment and one of up to 75% for the winter experiment. For summer, the mean Brier skill score is 0.14
and thus shows an average superiority of ensemble nudging while in winter it is -0.2 proving superiority of
the ECMWF-EPS. However, note that the sample size for each station is only 60 (data for 06 and 18 UTC,
30 days) so that  these results have to be handled with care.  The superiority  of  ensemble nudging in
summer and of the ECMWF-EPS in winter is confirmed through Table 5 which summarizes the Brier score
and  Brier  skill  score  for  different  decision  thresholds.  This  basic  conclusion  is  not  affected  by  the
uncertainties underlying the computation. Note that here,  1000 bootstrap samples comprising 90% of the
data have been drawn  to compute the Brier scores and their uncertainty (standard deviation) while for
Figure 11 the sample has been divided according to locations and the scores have been computed for
each location separately.´

The CRPSS shown in Figure 12 indicates a local improvement of up to 75%. On average, it is 0.14 which
indicates a superiority of ensemble nudging for the experimental month even if all possible thresholds are
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considered as done by the CRPS. However, in winter the C-EN is outperformed by the ECMWF-EPS as
the mean CRPSS is -0.19. Locally, C-EN is up to 175% worse than the ECMWF-EPS. However, just as
outlined for the Brier skill score, these results are only preliminary due to a limited sample size and will
revisited as soon as a longer time span will be available for the experiments. 

Table 5: Brier score for a range of decision thresholds for ECMWF-EPS and C-EN 6-hourly precipitation sums for June and
December 2011. Estimated from 1000 bootstrap samples drawing 90% of the data, the uncertainty is about 10 -3

,, rounded to the
third decimal place.

Threshold [mm] C-EN
June

ECMWF-EPS
June 

BSS
June

C-EN
December

ECMWF-EPS
December

BSS
December

0.1 0.12 0.19 0.58 ∓ 0.01 0.165 0.191 0.13∓0.01

0.5 0.01 0.12 0.44 ∓ 0.01 0.137 0.130 -0.05∓0.01

1 0.08 0.1 0.37 ∓ 0.01 0.118 0.105 -0.12∓0.01

2.5 0.05 0.06 0.33 ∓ 0.01 0.0742 0.062 -0.18∓0.01

5 0.34 0.04 0.34 ∓ 0.01 0.039 0.032 -0.24∓0.02

10 0.02 0.03 0.35 ∓ 0.02 0.025 0.019 -0.3∓0.03

15 0.02 0.03 0.29 ∓ 0.02 0.014 0.01 -0.41∓0.05

20 0.01 0.01 0.1 ∓ 0.02 0.007 0.004 -0.53∓0.07

Figure 12: Spatial distribution of the CRPS  skill score for the summer (left) and winter (right) experiments.
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Conclusion:

• Employing the Brier skill score and the CRPS skill score can be shown for the test period of June

2011 for ensemble nudging compared to the ECMWF-EPS. Findings from the foregoing sections
suggest that this is due to a better reliability of ensemble nudging. 

• The winter experiment for C-EN shows slightly inferior average skill scores. This is probably due to

a resolution worse than the one of the ECMWF-EPS. The physical processes that the observation
perturbations project on have to be subjected to further investigation. 

4. Summary and conclusion

The objective of the UB work leading into the deliverable on hand was to appraise the feasibility of a new
ensemble reanalysis system. Originally, the idea was to develop a combination of a new ensemble nudging
technique and a LETKF newly implemented at DWD. This EN-LETKF system seems to be very promising
for  the  application  to  regional  reanalysis  as  it  allows  to  produce   temporally  smooth  and  physically
balanced  time  series  (close  to  the  trajectory  of  the  true  atmosphere)  and  a  high  analysis  quality
incorporating  modern observations.  Of  course,  this  would  also  be  feasible  using  for  example  4D-Var,
however, such a data assimilation system is not available for the regional scale  in Germany. To date, the
conditions that would allow for a successful application of the EN-LETKF are not fulfilled. This is a matter of
the necessary ensemble size of at least 40 members, a matter of tuning to the system from 2.8 km to 12
km, a matter of a lack of perturbed boundary conditions  and above all a matter of a too small observation
stream with a lack of modern observations that forces a division of the conventional observations between
ensemble nudging and LETKF leading to an underexposed observation density. So far, it is not clear which
of these points leads to the observed problems with the system. Presumably, it  is a combination of all
unfulfilled conditions that is possibly aggravated by technical problems or errors.  

However,  at  this  point  of  time,  we  can show that  the  ensemble  nudging  data  assimilation  system is
beneficial for the purpose of computing a regional ensemble reanalysis. Certainly, nudging is about to be
disestablished as obsolete method for operational NWP, however, for regional reanalysis it proves to be
very useful. This is not only due to low computational costs (e.g. compared to 4D-Var) which allows for a
considerable number of ensemble members, but also due to a good accuracy of the analysed fields and
probabilistic and uncertainty estimation capabilities that we have shown in the course of this deliverable. 

We  have  hypothesized  that  high-resolution  regional  reanalyses  have  an  added  value  regarding
precipitation compared to global and coarser resolved reanalyses as well  as dynamical  downscalings.
Indeed, we could show that our sample of data based on an experiment with ensemble nudging for June
2011  agrees  with  theses  hypotheses.  Ensemble  nudging  outperforms  the  Hirlam  and  ERA-INTERIM
reanalyses both regarding frequency bias for a number of thresholds (making the data set meaningful for
climatological investigations based on frequency) as well as regarding the proportion correct score which
shows that it has higher accuracy both at the lower and the extreme decision thresholds. Just as would be
expected, the dynamical downscaling, which has twice the resolution of the ensemble nudging runs is
competitive concerning the frequency bias, but is poor in terms of accuracy. 

The probabilistic capabilities of the system are promising. For the chosen time period ensemble nudging
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yields a good reliability and resolution, whereby the latter is a bit worse than the one of the ECMWF-EPS in
winter. This is reflected by inferior Brier and CRPS scores in winter. The average skill scores are slightly
positive in summer and slightly negative in winter. This shows that the probabilistic capabilities of ensemble
nudging are on average comparable to the ones of the ECMWF-EPS which is currently the gold-standard
ensemble. Anyway, it should be kept in mind that ensemble nudging is a reanalysis ensemble whilst the
ECMWF-EPS is used for NWP. The uncertainty estimation capabilities measured by means of the spread-
skill ratio appear to be promising. They are expected to improve further if more uncertain ingredients of the
system like the lateral boundary conditions or model physics are perturbed. 
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