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1. Introduction 
 

Emphasis has been placed in this project on the generation of more comprehensive estimates of 

uncertainty in the E-OBS dataset through the development of stochastic measures of uncertainty. 

These estimates of uncertainty are derived from multiple realizations of the daily gridded fields. 

Few gridded datasets provide estimates of uncertainty, and even fewer estimate this uncertainty 

from an ensemble of realizations. Notable exceptions at the regional scale are the work of Clark et 

al. (2006) and Newman et al. (2015) and at the global scale the HadCRUT4 dataset (Morice et al. 

2012). The covariance of the gridded field in such datasets not only provides a more rigorous 

estimation of uncertainty in the gridded fields themselves but is particularly useful for generating 

uncertainty estimates in derived applications of the data. It should be stressed, however, that while 

the use of the term "ensemble" is used in these studies – as well as for the technique described here 

for the E-OBS dataset – this is quite a different estimation of uncertainty than is provided by an 

ensemble of climate model simulations (for example in the reanalysis data developed by UERRA), 

which use the same terminology. In the case of the model simulations the uncertainty is generated 

from changing the initial conditions of the model, whereas for the station-based interpolations 

described in this paper the uncertainty is a stochastic measure relative to the method of 

interpolation, and is ultimately determined by the density of input station data, and the suitability of 

the covariates used to effect the interpolation. 

 

2. The New E-OBS Daily Gridding Methodology 

 

In Deliverable D1.10 the regression-kriging method was introduced as a feasible way of 

interpolating the monthly values of temperature and precipitation in E-OBS. However, it became 

clear in the application of this method for the daily data that compound uncertainty between the 

daily and monthly fields, and between the regressed “spatial trend” and the kriged regression 

residuals, led to ambiguity in the estimates of uncertainty in the final daily grids. We have therefore 

opted for a single Generalized Additive Model (GAM) for each day. This gridding technique when 

applied to the E-OBS data is now considered stable, and a full 1950-2015 daily interpolation 

completes in a matter of hours, when run on the high-performance cluster at ECMWF. Efforts are 

currently under way to make this dataset operational. 

 

2.1 The statistical model 

 

In the general case, the GAMs used in this new interpolation of E-OBS follow those described by 

Wood et al. (2015, 2016), and evaluate the relationship between the temperature or rainfall response 

variable 𝑦𝑖 to one or more predictors 𝑥𝑗𝑖 as 

 

𝑦𝑖 = ∑ 𝑓𝑗(𝑥𝑗𝑖)

𝑛

𝑗=1

+ 𝜖𝑖,    𝑦𝑖 ∼ 𝑁(0, 𝜎2)  

where for 𝑛 smoothing parameters, 𝑓𝑗 are estimated for each of 𝑗 parametric vector covariates as 

part of the model fitting. The optimal fitting of the smooth functions 𝑓𝑗 is achieved using Restricted 

Marginal Likelihood (REML), which tends to suffer less from under-smoothing than the traditional 

GCV optimisation (Hastie & Tibshirani, 1990). 

 

The interpolation proceeds as two stages: long-term climatological averages for each month 

calculated over the period 1961-90 are initially modelled using environmental parameters, and daily 
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values are then modelled through a combination of latitude and longitude coordinates plus the 

background climatological field interpolated to the daily station locations. Specifically, the 

climatological variables are evaluated for each month as 

 

𝑦𝑖 = 𝑓1(𝑙𝑜𝑛𝑖 , 𝑙𝑎𝑡𝑖) + 𝑓2(𝑎𝑙𝑡𝑖) 

 

where 𝑓1 takes a reduced-rank thin-plate spline basis using latitude and longitude parameters, and 

𝑓2is a cubic spline response of altitude. As in the earlier versions of E-OBS, station-based altitude 

values are used for model-fitting, while GTOPO30 Digital Elevation Model (DEM) values of 

altitude are used for the interpolation. Although GTOPO30 has been superseded by GMTED2010 

(Danielson & Gesch, 2011), we continue to use GTOPO30 in this analysis to ensure that the 

comparison of the new version of E-OBS against the earlier version is restricted to the interpolation 

method, without the introduction of a confounding effect of different topographic data. We have 

also tested the potential for improved model fitting through the incorporation of additional co-

variates to the climatological models, which take cubic spline smoothing bases. In the case of the 

temperature variables we have included distance from the nearest coast and the topographic position 

index (TPI). Coastal proximity was calculated using a relatively coarse 1:110m resolution coastline 

so as to provide a measure to the nearest large body of water rather than minor coastal features 

(Daly et al. 2008). TPI is calculated as the difference between a cell and the mean of the nearest 

eight cells. It is intended to provide a measure of small scale features such as frost hollows. In the 

case of rainfall we have also included measures of slope (𝛼) and aspect (Θ) measured through the 

horizontal components 𝑝 and𝑞, where  

 

𝑝 = − cos 𝛼 sin Θ,  𝑞 = − sin 𝛼 sin Θ 
 

after Hutchinson (1998). These topographic parameters were calculated using the ~1km GTOPO30 

data. 

 

Since the models used in this interpolation are additive, the individual model terms can easily be 

extracted. These terms all represent physically plausible mechanisms of the temperature and 

precipitation climatology of Europe. The longitude/latitude model term represents the expected 

zonal pattern for temperature and meridional pattern for rainfall (Figure 1). During the winter 

months and to some extent the autumn, the latitudinal pattern of the temperature smoothing 

parameters is distorted along the Atlantic seaboard of Europe through sea-surface temperature 

effects. The variation in maximum and minimum daily temperature (not shown) broadly follow the 

results for mean temperature. In the case of the temperature variables, the altitude term (Figure 2) 

shows the expected lapse rate, which is greater than or less than the Dry Adiabatic Lapse Rate 

(DALR) depending on the month. In the case of rainfall this model-term indicates an increase in 

rainfall with altitude, which occurs a rate of ~2mm 𝑘𝑚1 up to ~1500m, but drops significantly 

beyond that altitude after which an increase is observed. This drop at ca. 2000m is possibly related 

to rain-shadow effects at higher altitudes, although it should be noted that there are few stations at 

that relatively high altitude. Coastal proximity has a strong warming effect on the temperature 

climatology during the autumn and winter months, but only up to ca. 100km distance from the 

coast, which is the same distance over which the effect was considered to be significant in the 

interpolation of temperature across the UK by Jarvis & Stuart (2001); during the spring and 

particularly the summer months the expected cooling effect of coastal proximity is captured by this 

parameter. The zonal and meridional slope and aspect vectors (Qvec and Pvec respectively) indicate 

a complex relationship between topography and the rainfall climatology. Strongly west-facing 
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slopes are associated with higher rainfall totals, and weakly so for slopes with a strong east-facing 

gradient. As would be expected the meridional vector has less of an effect on the rainfall 

climatology, although there is a notable reduction in rainfall where Pvec=0.2, although there are 

few stations exhibiting such a strong southerly inclination. It should be noted, however, that both of 

these vectors (Pvec and Qvec) have a weaker influence on rainfall than altitude. 

 

The daily interpolation of temperature and rainfall is achieved using a GAM of the form 

 

𝑦𝑖 = 𝑓3(𝑙𝑜𝑛𝑖 , 𝑙𝑎𝑡𝑖) + 𝑓4(𝑐𝑙𝑖𝑚𝑖) 
 

where 𝑐𝑙𝑖𝑚𝑖 are the local climatological values estimated from the climatological models for the 

respective month of the year. In the case of daily rainfall totals, the model is fitted to square root 

transformed values of 𝑦𝑖 to remove some of the skewness of the data. Tweedie distributions were 

tested since these models are suitable where the variance is proportional to the mean and have 

shown to be optimal for modelling rainfall values (Hasan & Dunn 2011). However, models using 

these distributions often failed to converge, particularly for days with a high number of zero values 

– a problem of greater frequency during the summer months.  

 

In these models the model residual 𝜖_𝑖 is assumed to be normally distributed and importantly 

without spatial autocorrelation. The longitude/latitude smoothing parameters are used in these 

models to account for this spatial autocorrelation. As discussed by Hefley et al. (2016) this captures 

Figure 1. The longitude/latitude smoothing parameters from the climatological GAMs for four months of the year, and 

for the variables of daily mean temperature (tg) and daily total rainfall (rr). The units are in °C and √𝑚𝑚  for 

temperature and rainfall respectively.  
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Figure 2. The smoothing parameters with cubic spline bases from the mean temperature (tg) and rainfall (mm) 

climatological GAMs for four months of the year. The black bars represent the station values that have been used in the 

models.   

first-order spatial autocorrelation of the variable and hence the function 𝑓3 describes autocorrelation 

in the mean of the distribution. Second-order functions captures autocorrelation in the covariance of 

the distribution and include the geoadditive models of Kammann & Wand (2003), whereby spatial 

autocorrelation is modelled using a pre-defined covariance function. In both the daily and 

climatological models, longitude and latitude were transformed from a regular grid (WGS80) to a 

Lambert Equal Area projection (EPSG:3035). This was favoured over the rotated-pole 

transformation of interpolation coordinates used in the previous versions of E-OBS, which suffers 

from distortion when converted back to regular coordinates. 
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Although this interpolation procedure consists of two stages – in a similar vein to the previous E-

OBS method - it marks a significant departure from the former approach. Rather than using the 

interpolated monthly means to constrain the daily values, topographic effects are incorporated by 

using the interpolated climatological values as a covariate in the GAM at the daily resolution. This 

follows the approach of Masson & Frei (2014) and Hiebl & Frei (2016, 2017), who found that the 

incorporation of topographic effects to daily rainfall data across the Alps and Austria via a function 

of the interpolated climatological variable to be an improvement over the more usual interpolation 

of climatological values and daily proportions separately. It should be noted, however, that these 

studies used this approach under an external-drift kriging procedure, and hence the climatological 

values were incorporated as a linear response. Here non-linearity is permitted. 

 

2.2 The uncertainty estimates  

In the initial construction of the E-OBS dataset the possibility of generating an ensemble of grids 

for each day was explored, with the spread across the ensemble providing a measure of uncertainty 

in the interpolated values (Haylock et al., 2008). Due to the significant computational burden that 

this procedure entails – at least for the methods used in that interpolation – that approach was 

rejected in favour of a single uncertainty value for each day, which was derived from a combination 

of the monthly-climatological uncertainty estimates and daily kriging uncertainty, derived using the 

technique developed by Yamamoto (2000).  

Figure 3. The maximum daily temperature interpolations for 4
th

 August 2003 (a) between the current operational 

version of E-OBS (version 14.0, old) and the GAM-derived interpolation (new). Also included are the differences 

between the interpolations (new minus old, b), and 95%ile uncertainty values (c) and the difference between the 

uncertainty values. The two interpolation versions have been masked to a common grid. The “new” interpolation in a) 

is the mean across the 100 grid realizations. 
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In this new version of E-OBS we estimate uncertainty in the daily interpolation by drawing 

simulations from the posterior distribution of the fitted model coefficients 𝛽, following the method 

described by Wood (2006) and Marra & Wood (2012).  The Bayesian reasoning used in this 

approach is essentially the same approach used in the thin-plate splines of the earlier version of E-

OBS, but is extended for use in the penalized GAMs used in this interpolation. This is achieved by 

simulating 100 sets of random vectors from 𝛽. Under this approach the simulations are conditional 

on the estimated smoothing parameters 𝜆̂ (Wood, 2006). From the distribution of these simulations 

the confidence intervals can be calculated by taking quantiles. However, as described by Wood 

(2006), while simulations are provided that are conditional on 𝜆̂ using this method, simulations that 

are unconditional on 𝜆̂ are desirable. The techniques suggested by Wood (2006) for overcoming 

this failed for certain daily models and therefore to ensure consistency across the time period, we 

continue to use simulations that are conditional on 𝜆̂. In general this has only small effects on the 

confidence interval of the fitted splines but can lead to a smaller confidence interval in the 

prediction than expected for a given quantile(Wood, 2006). 

 

1.3 Demonstration of the E-OBS gridded fields for two extreme events 

In this section we demonstrate the daily rainfall and temperature interpolation, along with the new 

uncertainty estimates, for two extreme events: the heavy rainfall event of 1
st
 June 2013 (see 

http://cib.knmi.nl/mediawiki/index.php/Central_European_flooding_2013) and the climax of the 

2003 European heatwave, on the 4
th

 August 2003.  

 

Figure 4. As Figure 3, but for the heavy rainfall event of 1
st
 June 2013 across central Europe. 

http://cib.knmi.nl/mediawiki/index.php/Central_European_flooding_2013
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The interpolation for the 2003 heatwave (Figure 3) is broadly similar between the two E-OBS 

versions, although the new interpolation is locally warmer across many central European regions 

and significantly cooler across most mountainous regions of Europe. The uncertainty estimates in 

the new interpolation depict much more closely the location of stations used in the interpolation, 

where uncertainty in much reduced. 

 

The interpolation of the heavy rainfall event of 1
st
 June 2013 (Figure 4) tends to be  smoother than 

the earlier version of E-OBS, with less gridbox-to-gridbox variation. However, the highest rainfall 

total is higher in the new interpolation. The increased spatial variance in the old interpolation results 

from the localized kriging technique used in previous versions of E-OBS, which restricts the 

number of stations to between 4 and 20, and the averaging of nine higher resolution grid-points to 

constitute the final ~25km grid cells. However, this higher variance gives a false impression of the 

variability of the daily rainfall field since the interpolation is not able to resolve rainfall patterns, at 

best, below ~25km. This spurious variance is evident in tests conducted as part of UERRA in the 

comparison of E-OBS against the high-resolution gridded datasets constructed by most National 

Meteorological Services (NMS) across Europe. Mean-error statistics, and percent-correct statistics 

are at least as comparable in the new version of E-OBS compared to earlier versions, and in certain 

cases the new interpolation is closer to the NMS data. 
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