
 

UERRA-D2 11v4  1 

  

Seventh Framework Programme 
Theme 6 [SPACE] 

 

 

 
 

Project: 607193 UERRA 

 

Full project title: 
Uncertainties in Ensembles of Regional Re-Analyses 

 

Deliverable D2.11 
Probabilistic observation data set 

 

 

WP no: 2 

WP leader: Met Office 

Lead beneficiary for deliverable : University of Bonn 

Name of author/contributors: Lilo Bach 

Nature: Report 

Dissemination level:  PU 

Deliverable month: 15 

Submission date: March 27, 2015 Version nr: 1 

 

 

 

  



Project: 607193 - UERRA   

 

2 
UERRA-D2 11v4 

 

A probabilistic observation data set for assimilation in 

ensemble nudging and statistical generation of upper-

air pseudo observations 
 

Lilo Bach
1
, Christian Ohlwein

2
, Andreas Hense

1
 and Jan Keller

3 

 
1
Meteorological Institute University of Bonn, 

2
Hans-Ertel-Centre for Weather Research 

at the Meteorological Institute University of Bonn and 
3
Deutscher Wetterdienst, 

Germany 

 

 

Abstract 

 

In this report, we present the work on deliverable D2.11. It contains an overview of the 

statistical methods developed for generating perturbed observations as well as pseudo 

observations, which is preparatory work for a high-resolution European ensemble 

reanalysis system. The work has been conducted by the Meteorological Institute of the 

University of Bonn (UB) as part of Work Package 2 on  Ensemble data assimilation 

regional reanalysis datasets committed under the EU-FP7-funded collaborative project 

entitled  Uncertainties in Ensembles of Regional Reanalyses (UERRA: Grant agreement 

no.: 607193, www.uerra.eu) in close cooperation with Christoph Schraff (data 

assimilation group at DWD)  Deutscher Wetterdienst. 

The report is divided into two parts. In the first part, the generation of an ensemble of 

reanalyses is outlined, whereby special emphasis is placed on the creation of perturbed 

observations following the purpose of the deliverable. In the second part, we describe 

the development of a statistical model for generating pseudo temperature observations 

that may be assimilated in areas or time-spans with sparse upper-air observations.  

 

 

1 Probabilistic observations for the generation of a nudging ensemble 

reanalysis 

 

UB's task as part of WP2 in UERRA is to provide a regional ensemble reanalysis system 

as well as a proof of concept high-resolution data set for Europe. In a first step, a hybrid 

LETKF/ensemble nudging system is developed which will be based on two DWD data 

assimilation systems: 

 

 the nudging scheme  (Schraff, 1997) 

 

 the local ensemble transform Kalman filter for the convective scale  (Reich, 2011). 

 

A link of these two systems is considered particularly useful for reanalysis purposes as 

it combines their positive features yielding low RMSE (LETKF) and a smooth time 
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series with small error spikes (nudging)  (Lei et. al, 2012a). 

In the foregoing course of the project, the ensemble nudging component has been 

developed and tested, where the perturbed observations to be delivered in this report are 

an integral part of. Results on ensemble nudging will be presented in a later derivable. 

However, being conducted online as part of the ensemble nudging run, the description 

of the observation perturbation technique is inseparable from a short outline of 

ensemble nudging. In the following, we describe the development of ensemble nudging 

from deterministic nudging and place special emphasis on the generation of the 

probabilistic observations. Ensemble nudging is based on deterministic nudging, which 

is briefly overviewed in the next paragraph. 

 

1.1 Deterministic Nudging 

 

Nudging performs a continuous relaxation of the prognostic variables of any numerical 

weather prediction model towards observations during the forward integration of the 

model. Additional terms proportional to the observation-model equivalent departures 

are obtained by spatially spreading the observation increments to the target grid points. 

Thereby, a spatial weighting is performed using vertical and horizontal structure 

functions (Schraff, 1997). The temporal weighting function is designed such that 

observations are assimilated with maximal weight at the observation time. In contrast to 

intermittent 3-dimensional data assimilation schemes, asynoptic observations and high-

frequency data can be assimilated at appropriate time. Nudging in its current 

implementation is not dependent on background or observation error covariance 

matrices. Instead, a static nudging coefficient having units of inverse time determines 

the strength by which the model state is corrected per model time step.  Unlike 4d-Var 

or the ensemble Kalman filter, nudging the applied configuration of does not explicitly 

take into account flow-dependency. However, particularly due to its great performance-

cost ratio yielding good analyses at low computational costs without dependence on 

tangent linear and adjoint models, nudging is used for many applications up to today 

(Stauffer and Seaman 1990, Stauffer et al. 1991, Seaman et al. 1995, Schraff 1997, 

Leidner et al. 2001, Otte et al. 2001, Deng et al. 2004, Deng and Stauffer 2006, 

Schroeder et al. 2006,  Dixon et al. 2009, Ballabrera-Poy et al. 2009, Bollmeyer et al. 

2015). 

 

Due to the time-continuous manner in which the observations are assimilated, nudging 

yields smooth, physically consistent time series with little disturbance of the physical 

balances (e.g. Lei et al. 2012b). This is an advantage over intermittent techniques like 

the ensemble Kalman filter, where the sudden introduction of large numbers of 

observations often leads to strong error spikes in the assimilation time window (e.g. 

Hunt et al. 2004). Nudging is therefore considered an outstanding partner for techniques 

combining two different data assimilation schemes incorporating their respective 

advantages. Especially in reanalysis applications at high resolutions, a smoothness of 

time series should become an increasingly desirable feature for future developments.  

 

1.2 Ensemble nudging using probabilistic observations 
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Applying ensemble nudging, the different ensemble members are nudged towards 

probabilistic observations. These are to be delivered in the framework of this report and 

shall be described in this paragraph.   

 

Following e.g. Houtekamer et al. 1996, a probabilistic observation  is given by 

perturbing the original observation o by means of a perturbation o' sampled from a 

normal distribution o'~N(0, σo) with zero mean and a standard deviation given by the 

observation error σo. We assume normally distributed, unbiased, stationary in time as 

well as spatio-temporally uncorrelated observation errors. The latter is a wide-spread 

assumption often coming along with observation thinning and inflation of observation 

error variances (Lahoz et al. 2010). 

 

We have implemented the perturbation process of observations into the limited area 

model COSMO as part of the nudging scheme. To provide physically sound 

observations, those exceeding reasonable value ranges are corrected accordingly. E.g., 

vertical lapse rates becoming super-adiabatic due to perturbation are corrected to 

prevent an extensive rejection of the probabilistic observations. In principal, 

observations from all used conventional observing systems including ACARS, 

AMDAR, TEMP, PILOT, WIND PROFILER, SYNOP, SHIP and DRIBU undergo the 

described perturbation process and a suitable quality control thereafter.  

 

1.3 Specification of observation errors 

 

The aim of ensemble nudging is to estimate the uncertainty of a nudging reanalysis 

given observation errors. Therefore it is of great importance to use reasonable estimates 

of the observation error standard deviations. However, the specification of observation 

errors and the corresponding covariances remain one of the major challenges in the field 

of data assimilation.  An observation error as defined in this context depends both on the 

observation itself and the measurement process, but also on the data assimilation 

method and the resolution of the model it is assimilated into. It consists of a 

representativity component, a measurement component as well as a component resulting 

from uncertainty in the observation operators (Hollingsworth and Lönnberg, 1986). 

 

Generally used methods for estimating observation errors are described in 

Hollingsworth and Lönnberg (1986) or Desroziers et al. (2005). They are diagnostics 

based on observations or on feedback output of data assimilation systems. Initially, we 

have investigated vertical and horizontal covariances of o-b and o-a departures (with o 

observation, a analysis and b background) from deterministic nudging reanalysis output 

(Bollmeyer et al. 2015). However, it has emerged that in the case of nudging the 

requirements for application of both Hollingsworth and Lönnberg (1986) or Desroziers 

et al. 2005 are not fulfilled:  

 

 o-b cannot be computed straightforward for nudging. A quasi-observation 

independent first guess as given by least-squares methods does not exist for 

nudging as the model state is continuously corrected by data assimilation.   
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 o-a departures have little validity for nudging, because the static nudging 

coefficient prescribes how strong the model states will be pulled towards the 

observations. Therefore, o-a cannot give information about systematic errors. 

 

After having figured out these limitations, we decided to rely on the observation error 

estimates used by DWD. These have been determined applying the aforementioned 

techniques of Hollingsworth and Lönnberg (1986) and Desroziers et al. (2005) to 

feedback data from other non-convection resolving NWP systems of similar resolution 

like COSMO.  The latter is of particular importance to guarantee for a reasonable 

estimation of the representativity component. The DWD observation error estimates 

have mainly been used for the quality control in the regional NWP system. Recently, 

their magnitude has been rechecked and partly reconfirmed or updated using feedback 

output from the new LETKF data assimilation scheme.  

 

Assimilated using ensemble nudging, the probabilistic observations have yielded 

reasonable ensemble spread and verification results in different case studies. The results 

are part of a deliverable on the feasibility of the hybrid LETKF-ensemble nudging 

system to be developed and will therefore be shown at a later stage of the project.  

 

2 Pseudo observations for observation-sparse areas and time spans 

 

In data assimilation, vertical correlations between observations expressed as structure 

functions play an important role for spreading observational information to the target 

grid points. Here, we make use of vertical correlations to statistically derive pseudo 

upper-air temperature observations from near surface temperature observations. These 

may help to enhance the data coverage in areas or time spans sparse of upper-air 

observations. 

 

2.1 Statistical model 

 

If vertical temperature profiles are to be derived, canonical correlations between 2m 

temperature and radiosonde data can be utilized. These are advantageous as they also 

take into account the correlations between temperatures at different radiosonde 

measurement levels. To examine the feasibility of our approach, we derive pseudo 

temperatures for just one atmospheric level. For that purpose, we perform a multiple 

linear regression analysis between German T2m data and Era-Interim 850-hPa data.  

 

SYNOP station data in an area of influence of 100 km are chosen for each Era-Interim 

grid point for a period ranging from 1979 to 2008. Only stations available for the whole 

time span are taken into account. Possible gaps in the data are filled using an 

expectation-maximization algorithm. For the regression, the data are sub-divided 

according to months and time and centered. 

 

We obtain n regression coefficients (where n is the number of T2m observations 

corresponding to the grid point) which remain stable when cross-validation is applied. 

Based on these coefficients plus real-time 2m temperature data, pseudo temperatures 
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can be derived and assimilated. It is of great advantage that the model can be utilized at 

any time - under the assumption of a constant statistical relationship, respectively.  

 

2.2 Results 

 

The resulting multiple correlations are best for the summer months around noon. Here, 

correlations of more than r
2
=0.9 are obtained in a wide area of Germany. This can be 

expected, because at this time the boundary layer is mostly convective and of 

considerable height. Similar heights can be reached under westerly atmospheric 

conditions that come along with strong advection and thus a neutral boundary layer. 

Lower multiple correlations are expectable for boundary layers of low height. These 

occur under stable conditions leading to a physical decoupling, i.e. a deterioration of the 

linear relation between the 2m temperature and the one in 850 hPa. Stable boundary 

layers develop for example in summer nights after sunny days when the radiation 

budget gets negative. This is often accompanied by the development of a residual layer. 

Moreover, stable boundary layers develop during winterly high-pressure systems over 

Central Europe (Stull, 1988). Indeed, lower multiple correlation coefficients are found 

for the winter months and summer nights.  

 

 

Figure 1:  Results from multiple linear regression for Germany, June 12 UTC. (a) 

squared multiple correlation coefficient, (b) mean difference between 1500 m and mean 

T2m station height, (c) number of stations with a pvalue lower than 0.05. 

Figure 1 shows exemplarily the regression results for June, 12 UTC. Figure 1(a) depicts 

the squared multiple correlation coefficient. Apparently, it increases from a value of 0.5 

(the square root is still approximately 0.7) at the German coasts of North and Baltic Sea 

coasts to 0.9 in the southern part of Germany. A comparison with Figure 1(b) showing 

the height difference between the climatological geometrical height of 850 hPa, i.e. 

1500 m, and the average height of the SYNOP stations measuring T2m it becomes 

obvious that the correlation increases with decreasing height difference. As shown by 

Figure 1(c) there is also a connection to the number of stations contributing significantly 

to the regression (having a pvalue less than 0.05) - albeit a fairly weaker one. Generally, 

in the coastal areas and eastern Germany, noticeably less SYNOP stations are available. 

The white areas in the plots represent grid points whose surroundings lack continuously 
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recorded SYNOP data. 

 

As outlined, the developed statistical model for deriving pseudo temperatures at the 850 

hPa pressure level from 2m-temperatures yields high multiple correlations. To better 

represent the actual lapse rate, humidity can be utilized as a further covariate. In the 

coastal areas additional use of sea surface temperatures can be taken into consideration 

to enhance the multiple correlation. Vertical profiles for the lower troposphere can be 

derived employing canonical correlation analysis. For long-time reanalyses such as 20-

CR, the regression coefficients can be generated flow-dependent using a Kalman-MOS. 

Currently, extensive assimilation experiments are run to achieve an estimate of the 

analysis quality.  
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